elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

Quantum Transfer Learning for Remote Sensing Datasets

Otgonbaatar, Soronzonbold (2022) Quantum Transfer Learning for Remote Sensing Datasets. Quantum working group meeting, 2022-09-28, Oberpfaffenhofen.

[img] PDF - Only accessible within DLR
573kB

Official URL: https://arxiv.org/abs/2209.07799

Abstract

Quantum machine learning (QML) networks promise to have quantum advantage for classifying supervised datasets over some conventional deep learning (DL) techniques due to its expressive power via local effective dimension. There are, however, two main challenges regardless of promised quantum advantage of QML networks: 1) Currently available quantum bits (qubits) are very small in number while real-world datasets are characterized by hundreds of large-scale elements (features). Additionally, there is not a single unified approach for embedding real-world large-scale datasets in limited qubits. 2) Some real-world datasets are very small for training QML networks. Hence, to tackle these two challenges for benchmarking and validating QML networks on real-world, small, and large-scale datasets in one-go, we employ quantum transfer learning composed a multi-qubit QML network and very deep convolutional network (VGG16) extracting informative features from any small, large-scale dataset. We use real amplitudes and strong entangling N-layer QML networks with and without data re-uploading layers as a multi-qubit QML network and evaluate their expressive power quantified by using local effective dimension; the lower local effective dimension of a QML network is, the better its performance on unseen data is. Our numerical result shows that the strong entangling N-layer QML network has lower local effective dimension than the real amplitudes QML network and outperforms it and classical transfer learning on the hard-to-classify three-class labelling problem. In addition, quantum transfer learning helps us to tackle the two challenges mentioned for benchmarking and validating QML networks on real-world, small, and large-scale datasets.

Item URL in elib:https://elib.dlr.de/188649/
Document Type:Conference or Workshop Item (Other)
Title:Quantum Transfer Learning for Remote Sensing Datasets
Authors:
AuthorsInstitution or Email of AuthorsAuthor's ORCID iDORCID Put Code
Otgonbaatar, SoronzonboldUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Date:1 January 2022
Refereed publication:No
Open Access:No
Gold Open Access:No
In SCOPUS:No
In ISI Web of Science:No
Status:Published
Keywords:quantum computing, quatum machine learning, quantum transfer learning, earth observation, remote sensing
Event Title:Quantum working group meeting
Event Location:Oberpfaffenhofen
Event Type:Workshop
Event Date:28 September 2022
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Space
HGF - Program Themes:Earth Observation
DLR - Research area:Raumfahrt
DLR - Program:R EO - Earth Observation
DLR - Research theme (Project):R - Artificial Intelligence
Location: Oberpfaffenhofen
Institutes and Institutions:Remote Sensing Technology Institute > EO Data Science
Deposited By: Otgonbaatar, Soronzonbold
Deposited On:11 Oct 2022 13:27
Last Modified:24 Apr 2024 20:49

Repository Staff Only: item control page

Browse
Search
Help & Contact
Information
electronic library is running on EPrints 3.3.12
Website and database design: Copyright © German Aerospace Center (DLR). All rights reserved.