elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Quantum Transfer Learning for Remote Sensing Datasets

Otgonbaatar, Soronzonbold (2022) Quantum Transfer Learning for Remote Sensing Datasets. Quantum working group meeting, 2022-09-28, Oberpfaffenhofen.

[img] PDF - Nur DLR-intern zugänglich
573kB

Offizielle URL: https://arxiv.org/abs/2209.07799

Kurzfassung

Quantum machine learning (QML) networks promise to have quantum advantage for classifying supervised datasets over some conventional deep learning (DL) techniques due to its expressive power via local effective dimension. There are, however, two main challenges regardless of promised quantum advantage of QML networks: 1) Currently available quantum bits (qubits) are very small in number while real-world datasets are characterized by hundreds of large-scale elements (features). Additionally, there is not a single unified approach for embedding real-world large-scale datasets in limited qubits. 2) Some real-world datasets are very small for training QML networks. Hence, to tackle these two challenges for benchmarking and validating QML networks on real-world, small, and large-scale datasets in one-go, we employ quantum transfer learning composed a multi-qubit QML network and very deep convolutional network (VGG16) extracting informative features from any small, large-scale dataset. We use real amplitudes and strong entangling N-layer QML networks with and without data re-uploading layers as a multi-qubit QML network and evaluate their expressive power quantified by using local effective dimension; the lower local effective dimension of a QML network is, the better its performance on unseen data is. Our numerical result shows that the strong entangling N-layer QML network has lower local effective dimension than the real amplitudes QML network and outperforms it and classical transfer learning on the hard-to-classify three-class labelling problem. In addition, quantum transfer learning helps us to tackle the two challenges mentioned for benchmarking and validating QML networks on real-world, small, and large-scale datasets.

elib-URL des Eintrags:https://elib.dlr.de/188649/
Dokumentart:Konferenzbeitrag (Anderer)
Titel:Quantum Transfer Learning for Remote Sensing Datasets
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Otgonbaatar, SoronzonboldSoronzonbold.Otgonbaatar (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2022
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:quantum computing, quatum machine learning, quantum transfer learning, earth observation, remote sensing
Veranstaltungstitel:Quantum working group meeting
Veranstaltungsort:Oberpfaffenhofen
Veranstaltungsart:Workshop
Veranstaltungsdatum:28 September 2022
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Künstliche Intelligenz
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > EO Data Science
Hinterlegt von: Otgonbaatar, Soronzonbold
Hinterlegt am:11 Okt 2022 13:27
Letzte Änderung:02 Okt 2024 09:29

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.