Tibau Alberdi, Xavier Andoni und Reimers, Christian und Gerhardus, Andreas und Denzler, Joachim und Eyring, Veronika und Runge, Jakob (2022) A spatiotemporal stochastic climate model for benchmarking causal discovery methods for teleconnections. Environmental data science, 1, e12. Cambridge University Press. doi: 10.1017/eds.2022.11. ISSN 2634-4602.
PDF
- Verlagsversion (veröffentlichte Fassung)
10MB |
Kurzfassung
Teleconnections that link climate processes at widely separated spatial locations form a key component of the climate system. Their analysis has traditionally been based on means, climatologies, correlations, or spectral properties, which cannot always reveal the dynamical mechanisms between different climatological processes. More recently, causal discovery methods based either on time series at grid locations or on modes of variability, estimated through dimension-reduction methods, have been introduced. A major challenge in the development of such analysis methods is a lack of ground truth benchmark datasets that have facilitated improvements in many parts of machine learning. Here, we present a simplified stochastic climate model that outputs gridded data and represents climate modes and their teleconnections through a spatially aggregated vector-autoregressive model. The model is used to construct benchmarks and evaluate a range of analysis methods. The results highlight that the model can be successfully used to benchmark different causal discovery methods for spatiotemporal data and show their strengths and weaknesses. Furthermore, we introduce a novel causal discovery method at the grid level and demonstrate that it has orders of magnitude better performance than the current approaches. Improved causal analysis tools for spatiotemporal climate data are pivotal to advance process-based understanding and climate model evaluation.
elib-URL des Eintrags: | https://elib.dlr.de/188646/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||
Titel: | A spatiotemporal stochastic climate model for benchmarking causal discovery methods for teleconnections | ||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||
Datum: | 27 September 2022 | ||||||||||||||||||||||||||||
Erschienen in: | Environmental data science | ||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||
Band: | 1 | ||||||||||||||||||||||||||||
DOI: | 10.1017/eds.2022.11 | ||||||||||||||||||||||||||||
Seitenbereich: | e12 | ||||||||||||||||||||||||||||
Verlag: | Cambridge University Press | ||||||||||||||||||||||||||||
ISSN: | 2634-4602 | ||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||
Stichwörter: | Causal algorithm causal discovery climate model teleconnections | ||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||
HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Aufbau Data Science Jena | ||||||||||||||||||||||||||||
Standort: | Jena | ||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Datenwissenschaften Institut für Physik der Atmosphäre > Erdsystemmodell -Evaluation und -Analyse | ||||||||||||||||||||||||||||
Hinterlegt von: | Tibau Alberdi, Xavier Andoni | ||||||||||||||||||||||||||||
Hinterlegt am: | 28 Nov 2022 14:10 | ||||||||||||||||||||||||||||
Letzte Änderung: | 21 Mai 2024 04:13 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags