Traoré, Kalifou René and Camero, Andrés and Zhu, Xiao Xiang (2022) Landscape of Neural Architecture Search across sensors: how much do they differ? In: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 3-2022, pp. 217-224. XXIV ISPRS Congress, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2022-06-06 - 2022-06-11, Nice, France. doi: 10.5194/isprs-annals-V-3-2022-217-2022. ISSN 2194-9042.
PDF
7MB |
Official URL: https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/V-3-2022/217/2022/
Abstract
With the rapid rise of neural architecture search, the ability to understand its complexity from the perspective of a search algorithm is desirable. Recently, Traoré et al. have proposed the framework of Fitness Landscape Footprint to help describe and compare neural architecture search problems. It attempts at describing why a search strategy might be successful, struggle or fail on a target task. Our study leverages this methodology in the context of searching across sensors, including sensor data fusion. In particular, we apply the Fitness Landscape Footprint to the real-world image classification problem of So2Sat LCZ42, in order to identify the most beneficial sensor to our neural network hyper-parameter optimization problem. From the perspective of distributions of fitness, our findings indicate a similar behaviour of the CNN search space for all sensors: the longer the training time, the larger the overall fitness, and more flatness in the landscapes (less ruggedness and deviation). Regarding sensors, the better the fitness they enable (Sentinel-2), the better the search trajectories (smoother, higher persistence). Results also indicate very similar search behaviour for sensors that can be decently fitted by the search space (Sentinel-2 and fusion).
Item URL in elib: | https://elib.dlr.de/188568/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech, Poster) | ||||||||||||||||
Title: | Landscape of Neural Architecture Search across sensors: how much do they differ? | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | June 2022 | ||||||||||||||||
Journal or Publication Title: | ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | Yes | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||
Volume: | 3-2022 | ||||||||||||||||
DOI: | 10.5194/isprs-annals-V-3-2022-217-2022 | ||||||||||||||||
Page Range: | pp. 217-224 | ||||||||||||||||
ISSN: | 2194-9042 | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | AutoML, Neural Architecture Search, Fitness Landscape Analysis, Sensor Fusion, Remote Sensing | ||||||||||||||||
Event Title: | XXIV ISPRS Congress, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences | ||||||||||||||||
Event Location: | Nice, France | ||||||||||||||||
Event Type: | international Conference | ||||||||||||||||
Event Start Date: | 6 June 2022 | ||||||||||||||||
Event End Date: | 11 June 2022 | ||||||||||||||||
Organizer: | ISPRS | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||
Deposited By: | Traoré, Mr René | ||||||||||||||||
Deposited On: | 11 Oct 2022 13:42 | ||||||||||||||||
Last Modified: | 24 Apr 2024 20:49 |
Repository Staff Only: item control page