Traoré, Kalifou René und Camero, Andrés und Zhu, Xiao Xiang (2022) Landscape of Neural Architecture Search across sensors: how much do they differ? In: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 3-2022, Seiten 217-224. XXIV ISPRS Congress, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2022-06-06 - 2022-06-11, Nice, France. doi: 10.5194/isprs-annals-V-3-2022-217-2022. ISSN 2194-9042.
PDF
7MB |
Offizielle URL: https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/V-3-2022/217/2022/
Kurzfassung
With the rapid rise of neural architecture search, the ability to understand its complexity from the perspective of a search algorithm is desirable. Recently, Traoré et al. have proposed the framework of Fitness Landscape Footprint to help describe and compare neural architecture search problems. It attempts at describing why a search strategy might be successful, struggle or fail on a target task. Our study leverages this methodology in the context of searching across sensors, including sensor data fusion. In particular, we apply the Fitness Landscape Footprint to the real-world image classification problem of So2Sat LCZ42, in order to identify the most beneficial sensor to our neural network hyper-parameter optimization problem. From the perspective of distributions of fitness, our findings indicate a similar behaviour of the CNN search space for all sensors: the longer the training time, the larger the overall fitness, and more flatness in the landscapes (less ruggedness and deviation). Regarding sensors, the better the fitness they enable (Sentinel-2), the better the search trajectories (smoother, higher persistence). Results also indicate very similar search behaviour for sensors that can be decently fitted by the search space (Sentinel-2 and fusion).
elib-URL des Eintrags: | https://elib.dlr.de/188568/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag, Poster) | ||||||||||||||||
Titel: | Landscape of Neural Architecture Search across sensors: how much do they differ? | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | Juni 2022 | ||||||||||||||||
Erschienen in: | ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
Band: | 3-2022 | ||||||||||||||||
DOI: | 10.5194/isprs-annals-V-3-2022-217-2022 | ||||||||||||||||
Seitenbereich: | Seiten 217-224 | ||||||||||||||||
ISSN: | 2194-9042 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | AutoML, Neural Architecture Search, Fitness Landscape Analysis, Sensor Fusion, Remote Sensing | ||||||||||||||||
Veranstaltungstitel: | XXIV ISPRS Congress, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences | ||||||||||||||||
Veranstaltungsort: | Nice, France | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 6 Juni 2022 | ||||||||||||||||
Veranstaltungsende: | 11 Juni 2022 | ||||||||||||||||
Veranstalter : | ISPRS | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||
Hinterlegt von: | Traoré, Mr René | ||||||||||||||||
Hinterlegt am: | 11 Okt 2022 13:42 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:49 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags