Traoré, Kalifou René and Camero, Andrés and Zhu, Xiao Xiang (2022) HPO: We won’t get fooled again. First International Conference on Automated Machine Learning, 2022-07-25 - 2022-07-27, Baltimore, United States of America.
PDF
1MB |
Official URL: https://arxiv.org/pdf/2208.03320.pdf
Abstract
Hyperparameter optimization (HPO) is a well-studied research field. However, the effects and interactions of the components in an HPO pipeline are not yet well investigated. Then, we ask ourselves: Can the landscape of HPO be biased by the pipeline used to evaluate individual configurations? To address this question, we proposed to analyze the effect of the HPO pipeline on HPO problems using fitness landscape analysis. Particularly, we studied the DS-2019 HPO benchmark data set, looking for patterns that could indicate evaluation pipeline malfunction, and relate them to HPO performance. Our main findings are: (i) In most instances, large groups of diverse hyperparameters (i.e., multiple configurations) yield the same \emph{ill} performance, most likely associated with majority class prediction models; (ii) in these cases, a worsened correlation between the observed fitness and average fitness in the neighborhood is observed, potentially making harder the deployment of local-search-based HPO strategies. Finally, we concluded that the HPO pipeline definition might negatively affect the HPO landscape.
Item URL in elib: | https://elib.dlr.de/188564/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Poster, Other) | ||||||||||||||||
Title: | HPO: We won’t get fooled again | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | 2022 | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | Yes | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | No | ||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||
Page Range: | pp. 1-9 | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | AutoML, Hyperparameter Optimization, Landscape Analysis | ||||||||||||||||
Event Title: | First International Conference on Automated Machine Learning | ||||||||||||||||
Event Location: | Baltimore, United States of America | ||||||||||||||||
Event Type: | international Conference | ||||||||||||||||
Event Start Date: | 25 July 2022 | ||||||||||||||||
Event End Date: | 27 July 2022 | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||
Deposited By: | Traoré, Mr René | ||||||||||||||||
Deposited On: | 07 Oct 2022 10:26 | ||||||||||||||||
Last Modified: | 24 Apr 2024 20:49 |
Repository Staff Only: item control page