Traoré, Kalifou René und Camero, Andrés und Zhu, Xiao Xiang (2022) HPO: We won’t get fooled again. First International Conference on Automated Machine Learning, 2022-07-25 - 2022-07-27, Baltimore, United States of America.
PDF
1MB |
Offizielle URL: https://arxiv.org/pdf/2208.03320.pdf
Kurzfassung
Hyperparameter optimization (HPO) is a well-studied research field. However, the effects and interactions of the components in an HPO pipeline are not yet well investigated. Then, we ask ourselves: Can the landscape of HPO be biased by the pipeline used to evaluate individual configurations? To address this question, we proposed to analyze the effect of the HPO pipeline on HPO problems using fitness landscape analysis. Particularly, we studied the DS-2019 HPO benchmark data set, looking for patterns that could indicate evaluation pipeline malfunction, and relate them to HPO performance. Our main findings are: (i) In most instances, large groups of diverse hyperparameters (i.e., multiple configurations) yield the same \emph{ill} performance, most likely associated with majority class prediction models; (ii) in these cases, a worsened correlation between the observed fitness and average fitness in the neighborhood is observed, potentially making harder the deployment of local-search-based HPO strategies. Finally, we concluded that the HPO pipeline definition might negatively affect the HPO landscape.
elib-URL des Eintrags: | https://elib.dlr.de/188564/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster, Anderer) | ||||||||||||||||
Titel: | HPO: We won’t get fooled again | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2022 | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
Seitenbereich: | Seiten 1-9 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | AutoML, Hyperparameter Optimization, Landscape Analysis | ||||||||||||||||
Veranstaltungstitel: | First International Conference on Automated Machine Learning | ||||||||||||||||
Veranstaltungsort: | Baltimore, United States of America | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 25 Juli 2022 | ||||||||||||||||
Veranstaltungsende: | 27 Juli 2022 | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||
Hinterlegt von: | Traoré, Mr René | ||||||||||||||||
Hinterlegt am: | 07 Okt 2022 10:26 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:49 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags