Matha, Marcel and Kucharczyk, Karsten and Morsbach, Christian (2022) Assessment of data-driven Reynolds stress tensor perturbations for uncertainty quantification of RANS turbulence models. In: AIAA Aviation 2022 Forum. AIAA AVIATION Forum 2022, 2022-06-27 - 2022-07-01, Chicago, Illinois, USA. doi: 10.2514/6.2022-3767. ISBN 978-1-62410-635-4.
PDF
9MB |
Official URL: https://arc.aiaa.org/doi/10.2514/6.2022-3767
Abstract
In order to achieve a more simulation-based design and certification process of jet engines in the aviation industry, the uncertainty bounds for computational fluid dynamics have to be known. This work shows the application of machine learning to support the quantification of epistemic uncertainties of turbulence models. The underlying method in order to estimate the uncertainty bounds is based on eigenspace perturbations of the Reynolds stress tensor in combination with random forests.
Item URL in elib: | https://elib.dlr.de/188540/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||
Title: | Assessment of data-driven Reynolds stress tensor perturbations for uncertainty quantification of RANS turbulence models | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | 21 June 2022 | ||||||||||||||||
Journal or Publication Title: | AIAA Aviation 2022 Forum | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | Yes | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||
DOI: | 10.2514/6.2022-3767 | ||||||||||||||||
ISBN: | 978-1-62410-635-4 | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | RANS, turbulence models, uncertainty quantification, machine learning, data-driven | ||||||||||||||||
Event Title: | AIAA AVIATION Forum 2022 | ||||||||||||||||
Event Location: | Chicago, Illinois, USA | ||||||||||||||||
Event Type: | international Conference | ||||||||||||||||
Event Start Date: | 27 June 2022 | ||||||||||||||||
Event End Date: | 1 July 2022 | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Aeronautics | ||||||||||||||||
HGF - Program Themes: | Clean Propulsion | ||||||||||||||||
DLR - Research area: | Aeronautics | ||||||||||||||||
DLR - Program: | L CP - Clean Propulsion | ||||||||||||||||
DLR - Research theme (Project): | L - Virtual Engine | ||||||||||||||||
Location: | Köln-Porz | ||||||||||||||||
Institutes and Institutions: | Institute of Propulsion Technology | ||||||||||||||||
Deposited By: | Matha, Marcel | ||||||||||||||||
Deposited On: | 30 Sep 2022 10:45 | ||||||||||||||||
Last Modified: | 24 Apr 2024 20:49 |
Repository Staff Only: item control page