elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

Machine Learning Approaches For Road Condition Monitoring Using Synthetic Aperture Radar

Rischioni, Lucas Germano (2022) Machine Learning Approaches For Road Condition Monitoring Using Synthetic Aperture Radar. Bachelor's, Instituto Tecnológico de Aeronáutica (ITA), São José dos Campos, Brazil.

Full text not available from this repository.


Item URL in elib:https://elib.dlr.de/188205/
Document Type:Thesis (Bachelor's)
Title:Machine Learning Approaches For Road Condition Monitoring Using Synthetic Aperture Radar
Authors:
AuthorsInstitution or Email of AuthorsAuthor's ORCID iDORCID Put Code
Rischioni, Lucas GermanoUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Date:2022
Refereed publication:Yes
Open Access:No
Status:Published
Keywords:Synthetic aperture radar, additive noise, surface roughness, machine learning
Institution:Instituto Tecnológico de Aeronáutica (ITA), São José dos Campos, Brazil
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Transport
HGF - Program Themes:Road Transport
DLR - Research area:Transport
DLR - Program:V ST Straßenverkehr
DLR - Research theme (Project):V - D.MoVe (old)
Location: Oberpfaffenhofen
Institutes and Institutions:Microwaves and Radar Institute > Radar Concepts
Deposited By: Babu, Arun
Deposited On:26 Sep 2022 07:55
Last Modified:21 Nov 2022 14:34

Repository Staff Only: item control page

Browse
Search
Help & Contact
Information
electronic library is running on EPrints 3.3.12
Website and database design: Copyright © German Aerospace Center (DLR). All rights reserved.