Alaya, Erij und Grabe, Cornelia und Eisfeld, Bernhard (2022) Evolutionary Algorithm applied to Differential Reynolds Stress Model for Turbulent Boundary Layer subjected to an Adverse Pressure Gradient. In: AIAA Aviation 2022 Forum, Seiten 1-27. AIAA Aviation 2022, 2022-06-27 - 2022-07-01, Chicago, USA. doi: 10.2514/6.2022-3337.
|
PDF
2MB |
Offizielle URL: https://doi.org/10.2514/6.2022-3337
Kurzfassung
In this paper, an evolutionary algorithm is implemented for the purpose of performing symbolic regression in an attempt to improve Reynolds Averaged-Navier-Stokes models predictions. In contrast to most machine learning algorithms, Gene Expression Programming generates a mathematical expression that can be directly interpreted and implemented into the Computational Fluid Dynamics solver. In this paper, the latter feature is exploited based on high-fidelity data to ascertain novel correlations for the pressure-strain correlation within a particular Differential Reynolds Stress Model, the Speziale-Sarkar-Gatski (SSG) model. The CFD-driven Gene Expression Programming is considered for the curved backward-facing step. Two models are obtained regarding the industrially relevant phenomenon of a turbulent boundary layer under adverse pressure gradient. The models are tested on a range of validation cases.
| elib-URL des Eintrags: | https://elib.dlr.de/188114/ | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
| Titel: | Evolutionary Algorithm applied to Differential Reynolds Stress Model for Turbulent Boundary Layer subjected to an Adverse Pressure Gradient | ||||||||||||||||
| Autoren: |
| ||||||||||||||||
| Datum: | Juni 2022 | ||||||||||||||||
| Erschienen in: | AIAA Aviation 2022 Forum | ||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||
| Open Access: | Ja | ||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||
| DOI: | 10.2514/6.2022-3337 | ||||||||||||||||
| Seitenbereich: | Seiten 1-27 | ||||||||||||||||
| Herausgeber: |
| ||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||
| Stichwörter: | Machine learning, turbulence modelling, Gene Expression Programming, GEP, Separated flow, turbulent boundary layer, adverse pressure gradient | ||||||||||||||||
| Veranstaltungstitel: | AIAA Aviation 2022 | ||||||||||||||||
| Veranstaltungsort: | Chicago, USA | ||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
| Veranstaltungsbeginn: | 27 Juni 2022 | ||||||||||||||||
| Veranstaltungsende: | 1 Juli 2022 | ||||||||||||||||
| Veranstalter : | AIAA | ||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
| HGF - Programm: | Luftfahrt | ||||||||||||||||
| HGF - Programmthema: | Effizientes Luftfahrzeug | ||||||||||||||||
| DLR - Schwerpunkt: | Luftfahrt | ||||||||||||||||
| DLR - Forschungsgebiet: | L EV - Effizientes Luftfahrzeug | ||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | L - Digitale Technologien | ||||||||||||||||
| Standort: | Braunschweig , Göttingen | ||||||||||||||||
| Institute & Einrichtungen: | Institut für Aerodynamik und Strömungstechnik > CASE, GO Institut für Aerodynamik und Strömungstechnik > CASE, BS | ||||||||||||||||
| Hinterlegt von: | Alaya, Erij | ||||||||||||||||
| Hinterlegt am: | 12 Dez 2022 17:31 | ||||||||||||||||
| Letzte Änderung: | 24 Apr 2024 20:49 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags