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In this paper, an evolutionary algorithm is implemented for the purpose of performing

symbolic regression in an attempt to improve Reynolds-Averaged-Navier-Stokes models pre-

dictions. In contrast to most machine learning algorithms, Gene Expression Programming

generates a mathematical expression that can be directly interpreted and implemented into the

Computational Fluid Dynamics solver. In this paper, the latter feature is exploited based on

high-fidelity data to ascertain novel correlations for the pressure-strain correlation within a

particular Differential Reynolds Stress Model, the Speziale-Sarkar-Gatski (SSG) model. The

CFD-driven Gene Expression Programming is considered for the curved backward-facing

step. Two models are obtained regarding the industrially relevant phenomenon of a turbulent

boundary layer under adverse pressure gradient. The models are tested on a range of validation

cases.

I. Nomenclature

𝑎12 = Anisotropy ratio

𝑏12 = Bradshaw constant

𝑏𝑖 𝑗 = Component of Reynolds stress anisotropy tensor

𝑐 𝑓 = Skin friction coefficient

𝐶𝑖 = Coefficients of pressure-strain correlation
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𝐶𝑖 𝑗 = Component of Reynolds stress convection, 𝑚2/𝑠3

𝑐𝑝 = Pressure coefficient

𝐶𝜇 = Equilibrium parameter

𝐷𝑖 𝑗 = Component of Reynolds stress diffusion, 𝑚2/𝑠3

𝐹1 = Blending function by Menter

ℎ = Genome head length

𝐻 = Step height, 𝑚

𝐼𝑏 = First invariant of Reynolds stress anisotropy tensor

𝐼 𝐼𝑏 = Second invariant of Reynolds stress anisotropy tensor

𝐼 𝐼𝑆 = Second invariant of strain rate tensor

𝐼 𝐼𝑆 = Normalized second invariant of strain rate tensor

𝐼 𝐼 𝐼𝑏 = Third invariant of Reynolds stress anisotropy tensor

𝐼̃ 𝐼 𝐼𝑏 = Normalized third invariant of Reynolds stress anisotropy tensor

𝑘̃ = Specific kinetic turbulence energy, 𝑚2/𝑠2

𝐿 = Flat plate length, 𝑚

𝑛 = Number of arguments of a mathematical operator

𝑃𝑖 𝑗 = Component of Reynolds stress production, 𝑚2/𝑠3

𝑅̃𝑖 𝑗 = Component of specific Reynolds stress tensor, 𝑚2/𝑠2

𝑅𝑒 = Reynolds number

𝑅𝑒𝑡 = Tubulent Reynolds number

𝑅𝑒𝑡 = Normalized tubulent Reynolds number

𝑆𝑖 𝑗 = Component of mean strain rate tensor, 1/𝑠

𝑆∗𝑖 𝑗 = Component of traceless strain rate tensor, 1/𝑠

𝑡 = Genome tail length

𝑢 = Streamwise velocity, 𝑚/𝑠

𝑢+ = Non-dimensional velocity in inner scaling

𝑢′′ = Component of fluctuating velocity, 𝑚/𝑠

𝑈𝑖 = Velocity component, 𝑚/𝑠

𝑈𝑖𝑛 = Inlet streamwise velocity, 𝑚/𝑠

𝑢′𝑢′+ = Non-dimensional Reynolds streamwise stress in inner scaling

𝑢′𝑣′+ = Non-dimensional Reynolds shear stress in inner scaling

𝑣′′ = Component of fluctuating velocity, 𝑚/𝑠
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𝑣′𝑣′+ = Non-dimensional Reynolds wall-normal stress in inner scaling

𝑤′′ = Component of fluctuating velocity, 𝑚/𝑠

𝑊̃𝑖 𝑗 = Component of mean rotation tensor, 1/𝑠

𝑤′𝑤′+ = Non-dimensional Reynolds spanwise stress in inner scaling

𝑥 = streamwise cartesian coordinate, 𝑚

𝑦 = wall-normal cartesian coordinate, 𝑚

𝑦+ = Non-dimensional wall distance in inner scaling

symbols

𝛼𝜔 = Coefficient of 𝜔-production

𝛽𝜔 = Coefficient of 𝜔-destruction

𝛿𝑖 𝑗 = Kronecker symbol

𝜖 = Dissipation rate, 𝑚2/𝑠3

𝜖𝑖 𝑗 = Component of Reynolds stress dissipation, 𝑚2/𝑠3

ℱ = Function set

ℑ = Input data set

𝜃 = Momentum thickness, 𝑚

Θ = Value predicted by GEP

Θ̂ = Target value

𝜅 = Von-Kármán constant

𝜇 = Dynamic viscosity, 𝑘𝑔/(𝑚𝑠)

Π𝑖 𝑗 = Component of pressure-strain correlation, 𝑚2/𝑠3

𝜌̄ = Density, 𝑘𝑔/𝑚3

𝜎𝑑 = Coefficient of cross-diffusion

𝜎𝜔 = Coefficient of 𝜔-diffusion

Φ(𝜖 ) = Coefficient belonging to 𝜖-equation

Φ(𝜔) = Coefficient belonging to 𝜔-equation

𝜔 = Specific dissipation rate, 1/𝑠
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II. Introduction

The field of Computational Fluid Dynamics (CFD) has grown significantly in the past decades thanks to the

substantial increase in capacities of modern computers. In particular, Reynolds-Averaged-Navier-Stokes (RANS)

calculations have become a standard in today’s industrial applications yielding good accuracy at low-cost when compared

to very expensive high-fidelity simulations like Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES).

However, RANS calculations rely completely on turbulence models, which are prone to errors especially when predicting

complex flows e.g. separated flows [1].

While state-of-the-art RANS turbulence models deliver reliable results in many cases, certain industrially relevant

flow phenomena remain challenging. One of these flow phenomena is the Turbulent Boundary Layer (TBL) subjected

to an Adverse Pressure Gradient (APG) on a smooth surface, which is of significant importance for many engineering

applications. Ongoing effort is being made to improve RANS models using classical methods to better understand

these flow phenomena [2] [3] [4]. Although considerable progress has been achieved in this field, the development

has stagnated [5] [6]. For this reason, an increasing effort is made to introduce machine learning (ML) to turbulence

modeling as a novel method to generate more accurate, data-driven turbulence models. The rapidly growing number of

publications covering the application of ML techniques to turbulence modeling [7] [8] shows the expected potential

of ML in identifying new, previously unexplored correlations in closure models. Some of the popular data-driven

turbulence modeling approaches are the field inversion and machine learning approach of Duraisamy et al. [9] [10],

the physics-informed machine learning for turbulence modeling of Ling et al. [11] [12] [13] and the Gene Expression

Programming (GEP) of Weatheritt and Sandberg [14]. The latter approach is used in this paper because, unlike most ML

Neural-Network based methods, it provides insights into the derived relations by generating tangible and interpretable

mathematical expressions instead of a black-box ML model. Yielding these expressions allows verifying the physical

plausibility of the model and the direct implementation into a CFD solver. For example, in a series of published papers

[15][16][17][18], Weatheritt et al. made a continuous effort to further develop the GEP tool to expand the Boussinesq

approximation within Menter’s Shear Stress Transport model [19].

While most publications cover ML-methods for eddy-viscosity based RANS turbulence models, the application of

ML to Differential Reynolds Stress models (DRSM) is still an open field of research. DRSM models are considered the

most advanced RANS turbulence models. By solving six transport equations for the Reynolds stress components [20]

plus one length-scale equation [21][22][23], these models are in principle capable of predicting the interaction between

Reynolds stresses and mean velocity gradients more comprehensively [24], and, therefore, are more attractive to be

applied for complex 3D flows [25][26][23]. In DRSM, the production of the Reynolds stresses is exactly given [25],

however, the transport equations for the Reynolds stress tensor contain further unknown terms, e.g. the pressure-strain

correlation needs to be modeled and therefore include uncertainty. Hence, the purpose of the present work is to apply
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the GEP approach to DRSM in an attempt to improve its prediction for TBL under APG with and without separation.

The presented work is part of the HORIZON2020 project HiFi-TURB, where high-fidelity DNS data for several key

flow phenomena are generated and interrogated using machine learning techniques to extract information to improve

advanced state-of-the-art RANS turbulence models.

This paper starts with an introduction into GEP. Afterwards, the details about applying GEP to a DRSM model,

the Speziale-Sarkar-Gatski (SSG) model [27] and the flow features considered by the GEP algorithm are presented.

GEP training for the curved backward-facing step test case [28] [29] resulted in two models, which are then tested on

multiple cases.

III. Methodology

A. The GEP approach

Gene Expression Programming (GEP) is an evolutionary algorithm first introduced by Ferreira [30] in 2001. It is

a genotype-phenotype algorithm that uses concepts of biology and modern genetics and is based on the Darwinian

evolutionary theory "survival of the fittest" [31]. This section is based primarily on the work of Ferreira [30], Zhong et

al. [32] and Weatheritt [33]. As any evolutionary algorithm, the basic concept of GEP is summed up in the following

figure:

Fig. 1 GEP basic concept

Initially, the GEP tool starts by creating a population of candidates (also called individuals, organisms or

chromosomes). The creation of these individuals is a random process and does not undergo any constraints. Each

individual is encoded in a fixed-length string of arbitrary linked genes called genotype, which stores the entire genetic

information that can be evolved. The genotype encloses the so-called phenotype, which constitutes the functional

expression of the individual. The phenotype can be represented as an expression tree, which can vary in size, despite the

fixed-length nature of the genotype. To ensure the constant correct representation of the phenotype, the genotype is

encoded as a head of predefined length ℎ that contains an input set of arguments e.g. ℑ = {𝑎, 𝑏} as well as a function
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set of mathematical operators, e.g. ℱ = {+,−,×, cos} and a tail that only contains input arguments with the length

𝑡 = ℎ(𝑛 − 1) + 1 where 𝑛 represents the number of arguments the mathematical operator with the most arguments takes.

As an example, we take the genotype illustrated in Fig. 2 as string representation.

Fig. 2 GEP individual: String representation

The head and the tail are separated by the symbol "|". As depicted in Fig. 2, the head contains elements of the input

set as well as from the function set, whereas the tail only contains elements from the input set. This is to ensure that

every mathematical operator contains a sufficient number of input arguments. In this example, there are two types of

mathematical operators: the one that can take one single argument like the cosine function cos and the others that require

two arguments like the addition or the multiplication function. This means the maximal number of arguments that can

be processed by a mathematical operator in this example is 𝑛 = 2. With the head length being set to 7, we can determine

the tail length 𝑡 = 7 × (2 − 1) + 1 = 8. As mentioned before, the phenotype, in this case "cos(𝑏) × (𝑎 − (𝑎 + 𝑏))", can be

represented by a tree structure as in Fig. 3.

Fig. 3 GEP individual: Expression tree representation

In this fashion, GEP combines the advantages of a string structure in being versatile and simple to manipulate and the

tree structure in being easy to grasp. Further details of theworkingmechanisms of GEP can be found in [30], [33] and [14].
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The next step is the evaluation of the fitness of the populations’ individuals. For every individual, the cost function,

which is selected depending on the application, is calculated. In this paper, the basic mean-square-error MSE is selected:

cost function = 𝐸 ((Θ − Θ̂)2) (1)

where Θ represents the value predicted by the GEP tool and Θ̂ represents the value considered as "truth". At this

point, the individuals performing well (low-cost function) are kept, and the ones that perform poorly are forced to die out.

The evaluation produced is then transported further to the termination step, where each individuals’ performance is

assessed by termination criteria. There are three termination criteria:

• One of the individuals performs very well and the goal is thereby achieved

• The number of generations has reached the maximum set by the user

• There is a performance stagnation and the individuals are not presenting an obvious improvement

If one of them is met, the computation stops immediately and the individual with the best fitness is rendered.

However, if the termination criterion is unmet, the computation moves on to the selection step. Selection means, in

this context, natural selection, where a mechanism is put in place in which the "fittest" individuals are picked out and

can act as "parents" in the subsequent steps allowing them to pass their genetic information to a following generation.

The selection methods (mostly roulette wheel selection or tournament selection) include some randomness, with the

fittest individuals having the highest chance at getting picked out. The variation step introduces modifications to the

selected individuals using genetic operations. These variations include crossover, mutation, reproduction, replication,

etc. Ultimately, the generation of a new population takes place by looping through the last four steps until one of the

termination criteria is met.

B. Application of GEP approach to Differential Reynolds Stress Models

1. RSM model equations

The GEP approach has already been used successfully in turbulence modeling for Explicit-Algebraic Reynolds

Stress Models (EARSM) by Weatheritt and Sandberg et al. [14]. The GEP tool, EVE3 [14], that was developed and

deployed for the purpose, is used in this work to explore its potential in improving the prediction of Differential Reynolds

Stress Models (DRSM) for a selected flow phenomenon. For this purpose, a detailed examination of the DRSM model

is carried out. In this section a brief description of the exact Reynolds transport equation and its components, followed

by the modeling methodology of the Speziale-Sarkar-Gatski (SSG) model [27] and finally the application of the GEP

tool on the model is presented.

The exact Reynolds Stress Transport equation describes the evolution of individual components of the Reynolds
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stress tensor [34]:

𝜕𝜌̄𝑅̃𝑖 𝑗

𝜕𝑡
+ 𝜕

𝜕𝑥𝑘
𝜌̄𝑅̃𝑖 𝑗𝑈̃𝑘 = 𝜌̄𝑃𝑖 𝑗 + 𝜌̄Π𝑖 𝑗 − 𝜌̄𝜖𝑖 𝑗 + 𝜌̄𝐷𝑖 𝑗 (2)

where 𝑃𝑖 𝑗 is the production term, Π𝑖 𝑗 is the pressure-strain correlation term , 𝜖𝑖 𝑗 is the dissipation term and 𝐷𝑖 𝑗 is the

diffusion term. 𝜌̄𝑅̃𝑖 𝑗 = 𝜌𝑢′′
𝑖
𝑢′′
𝑗
are the specific Reynolds stresses with the corresponding non-dimensional anisotropies:

𝑏𝑖 𝑗 =
𝑅̃𝑖 𝑗

2𝑘̃
− 1

3
𝛿𝑖 𝑗 (3)

The anisotropy invariants are:

𝐼𝑏 = 𝑏𝑖𝑖 = 0 𝐼 𝐼𝑏 = −1
2
𝑏𝑖 𝑗𝑏𝑖 𝑗 𝐼 𝐼 𝐼𝑏 =

1
3
𝑏𝑖 𝑗𝑏 𝑗𝑘𝑏𝑘𝑖 (4)

The production term 𝑃𝑖 𝑗 and the pressure-strain correlation term Π𝑖 𝑗 are considered to have the same order of

magnitude and are of substantial importance in most engineering relevant flows [24]. While the production term is

closed and given exactly, the pressure-strain correlation involves essentially unmeasurable correlations [24] and requires

modeling. In incompressible and weakly compressible flows, it is responsible for distributing turbulent kinetic energy

among the components of the Reynolds stresses [34]. The exact expression of the pressure-strain correlation is:

𝜌̄Π𝑖 𝑗 = 𝑝′

(
𝜕𝑢′′

𝑖

𝜕𝑥 𝑗

+
𝜕𝑢′′

𝑗

𝜕𝑥𝑖

)
(5)

Multiple models for the pressure-strain correlation exist. The most general ones are by Lumeley and Newman [35]

as well as by Johansson and Hallbäck[36] [37]. The SSG model is a widely used turbulence model which is based on a

quadratic equation and is utilized throughout this work. It is given by

𝜌̄Π𝑖 𝑗 = −
(
𝐶1 𝜌̄𝜖 +

1
2
𝐶∗

1 𝜌̄𝑃𝑘𝑘

)
𝑏̃𝑖 𝑗 + 𝐶2 𝜌̄𝜖

(
𝑏̃𝑖𝑘 𝑏̃𝑘 𝑗 −

1
3
𝑏̃𝑘𝑙 𝑏̃𝑙𝑘𝛿𝑖 𝑗

)
+

(
𝐶3 − 𝐶∗

3

√︃
𝑏̃𝑘𝑙 𝑏̃𝑘𝑙

)
𝜌̄ 𝑘̃ ˜𝑆∗

𝑖 𝑗
+ 𝐶4 𝜌̄ 𝑘̃

(
𝑏̃𝑖𝑘𝑆 𝑗𝑘 + 𝑏̃ 𝑗𝑘𝑆𝑖𝑘 −

2
3
𝑏̃𝑘𝑙𝑆𝑘𝑙𝛿𝑖 𝑗

)
+ 𝐶5 𝜌̄ 𝑘̃

(
𝑏̃𝑖𝑘𝑊̃ 𝑗𝑘 + 𝑏̃ 𝑗𝑘𝑊̃𝑖𝑘

)
(6)

where:

Table 1 SSG model constants

𝐶1 𝐶∗
1 𝐶2 𝐶3 𝐶∗

3 𝐶4 𝐶5

3.4 1.8 4.2 0.8 1.3 1.25 0.4

8
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The calibrated constants in Tab.1 are believed to be functions of the anisotropy invariants listed in eq.(4) [24]. In

this paper, an attempt is made to extract mathematical expressions from the GEP tool, with which the constants 𝐶𝑖 in the

SSG model are replaced. In addition to the anisotropy invariants 𝐼 𝐼𝑏 and 𝐼 𝐼 𝐼𝑏 as potential dependencies, the second

invariant of the strain rate tensor tenor 𝐼 𝐼𝑆 (eq.(7)) and the turbulent Reynolds number 𝑅𝑒𝑡 (eq.(8)) are also considered

in the training process with:

𝐼 𝐼𝑆 =
1

𝐶𝜇𝜔

√︃
˜𝑆∗
𝑖 𝑗

˜𝑆∗
𝑖 𝑗

; ˜𝑆∗
𝑖 𝑗
= ˜𝑆𝑖 𝑗 −

1
3

˜𝑆𝑘𝑘𝛿𝑖 𝑗 (7)

Ret =
𝜌𝑘̃

𝜇𝐶𝜇𝜔
(8)

These five input parameters have different orders of magnitude in the flow phenomenon investigated, which

increases the probability of some parameters getting excluded during the training process. As a preventive measure, a

normalization is applied and the following five parameters are considered for the GEP training process:

𝐼 𝐼𝑏
√︁
𝐼 𝐼𝑏 𝐼̃ 𝐼 𝐼𝑏 =

𝐼 𝐼 𝐼𝑏

𝐼 𝐼 𝐼𝑏 + 1
𝐼 𝐼𝑆 =

𝐼 𝐼𝑆

𝐼 𝐼𝑆 + 1
R̃et =

Ret

Ret + 1
(9)

The number of constant coefficients in eq.(6) exceeds the number of Reynolds stress anisotropies in two-dimensional

flow at turbulent equilibrium. As a result, different sets of coefficients can yield various similar solutions [37]. Hence,

there is no unique solution and the problem is over-determined. Adding the fact that, with seven different coefficients to

optimize, the search domain is extensive, the GEP training process becomes challenging.

Furthermore, most DRSM models are calibrated by turbulent equilibrium flows. As a result, separated flow regions

are often overestimated [25][38] [39]. This has been shown by Eisfeld in [25] where the author also stated that no

DRSM model with fixed coefficients would be able to predict all flow phenomena accurately. Hence, in this work we are

not claiming to identify one model that would deliver an accurate solution for every flow phenomenon but, rather, a

model that shows an improvement in the case of turbulent boundary layers subjected to an adverse pressure gradient

including separation. In the best case scenario, this would not have a detrimental effect on the prediction of other flow

phenomena or turbulent equilibrium flows, like the turbulent boundary layer for the zero-pressure gradient flat plate.

Note that, although the original SSG model [27] is based on the length scale variable 𝜖 , Menter’s baseline𝜔-equation,

which is based on the specific dissipation rate 𝜔, is used in this work to supply the length scale variable. As mentioned

by Eisfeld in [37], this helps avoid the need for any additional near-wall treatment.

𝜕𝜌̄𝜔

𝜕𝑡
+ 𝜕

𝜕𝑥𝑘
𝜌̄𝜔𝑈̃𝑘 = 𝛼𝜔

𝜔

𝑘̃

𝜌̄𝑃𝑘𝑘

2
− 𝛽𝜔 𝜌̄𝜔

2 + 𝜕

𝜕𝑥𝑘

[(
𝜇̄ + 𝜎𝜔

𝜌̄ 𝑘̃

𝜔

)
𝜕𝜔

𝜕𝑥𝑘

]
+ 𝜎𝑑

𝜌̄

𝜔
𝑚𝑎𝑥

(
𝜕𝑘̃

𝜕𝑥 𝑗

𝜕𝜔

𝜕𝑥 𝑗

, 0
)

(10)
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In the length scale equation eq.(10), the coefficients 𝜙 = 𝛼𝜔 , 𝛽𝜔 , 𝜎𝜔 , 𝜎𝑑 are blended by applying Menter’s 𝐹1

function (see Tab.2):

Φ = 𝐹1Φ
(𝜔) + (1 − 𝐹1)Φ(𝜖 ) (11)

with the superscript 𝜔 representing the near wall region and the superscript 𝜖 the outer region of Menter’s baseline

equation [40] [41] [42].

Table 2 Menter’s baseline 𝜔-equation coefficients

𝛼𝜔 𝛽𝜔 𝜎𝜔 𝜎𝑑

near wall (𝜔) 0.5556 0.075 0.5 0
outer region (𝜖) 0.44 0.0828 0.856 1.712

In thiswork, the production and destruction terms of the nearwall region aswell as the outer region (𝛼 (𝜔)
𝜔 , 𝛼

(𝜖 )
𝜔 , 𝛽

(𝜔)
𝜔 𝑎𝑛𝑑 𝛽

(𝜖 )
𝜔 )

are further calibrated by the GEP method to investigate their influence on a GEP-modified DRSM model.

2. GEP approach application

There are two possibilities of applying the GEP approach: frozen and CFD-driven [17]. In the frozen approach,

RANS data is extracted from an existing CFD simulation and fed into the GEP tool as input data ℑ together with the

function setℱ (see Fig. 4). In this case, the GEP tool generates a set of candidates for the pressure-strain correlation

Π𝐺𝐸𝑃
𝑖 𝑗

which is then evaluated against the high-fidelity data Π𝐻𝑖𝐹𝑖
𝑖 𝑗

, considered as "truth", by means of a cost function

(see eq. (1)). The RANS data remain the same during the process of generating new expressions for the pressure-strain

correlation term, thus the term "frozen" [17]. The final selection for the pressure-strain correlation term is implemented

into the CFD-code for an evaluation.

Fig. 4 GEP frozen approach

10

D
ow

nl
oa

de
d 

by
 M

ar
ku

s 
R

ue
tte

n 
on

 D
ec

em
be

r 
6,

 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
2-

33
37

 



The frozen method is a good choice when using input data that is independent of the parameter being altered. This

is not the case for the pressure-strain correlation Π𝑖 𝑗 where the flow field variables, including anisotropy invariants, are

dependent on the coefficients of the pressure-strain correlation. When the coefficients are adjusted by the GEP tool also

the flow field and the pressure-strain correlation changes. As this influence on the flow solution is not considered in the

frozen approach, it is difficult to quantify the improvement made by the GEP tool, which makes the selection process

prone to errors.

Furthermore, modifying only the pressure-strain correlation does not automatically imply an improved flow field

prediction. Hence, a reliable evaluation process should be based on a quantity directly linked to the flow phenomenon to

be predicted. The frozen GEP method has been investigated extensively in a preliminary step of this work. Although

some models that were extracted from the frozen process showed improvement in the training process, not all models

converged when implemented into the CFD solver and even fewer yielded an improved prediction compared to the

original SSG model.

Fig. 5 GEP CFD-driven approach

To overcome the shortcomings of the frozen GEP method in this particular case, the CFD-driven approach is

introduced [17] (see Fig.5). During this process, the GEP tool is assigned a function setℱ just as in the frozen approach.

However, unlike the frozen approach, the input set ℑ serves only as a placeholder for the following steps. The GEP tool
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then generates a set of candidates as a random mix of function set and input set parameters. In Fig.5, the number of

generated candidates in one generation is 20, which is the case for all the models presented in the following sections of

the paper. Here, each individual in the pool of candidates is implemented into the CFD-code and a RANS simulation is

performed. Depending on the solution of the computations, the performance of the individual candidates is evaluated

based on a selected informative quantity.

The focus of this work is mainly on separated flow and, in particular, the accurate prediction of the separation region

(separation point, reattachment point and bubble shape). An appropriate measure for the separation region is the skin

friction coefficient 𝑐 𝑓 . While the pressure-strain correlation Π𝑖 𝑗 is still being modified by replacing each coefficient 𝐶𝑖

with a GEP produced expression, the evaluation of the GEP produced expression is not based on the pressure-strain

correlation. Instead, the individual candidates are automatically implemented into individual versions of the CFD-code,

which are then compiled. From the results of the individual CFD computations performed simultaneously, each 𝑐𝐺𝐸𝑃
𝑓

is

compared separately to the skin friction coefficient 𝑐𝐻𝑖𝐹𝑖
𝑓

from a high-fidelity data set using the cost funtion in eq.(1).

Besides the goal-oriented evaluation of an expression by an informative quantity (the skin friction coefficient), the

evaluation also accounts for numerical robustness, as candidates with poor convergence will be not considered in an

upcoming generation. The process is repeated as displayed in Fig.1 until a termination criterion is met.

C. Numerical method

All CFD simulations were performed using the DLR in-house software TAU [43]. TAU is an unstructured cell-

centered on dual-grids code of 2𝑛𝑑−order accuracy. For the computations performed here, the mean-flow and turbulence

convective terms are discretized using 2𝑛𝑑−order upwind schemes together with Matrix Dissipation. Low-Mach number

preconditioning was applied and steady computations using a LU-SGS scheme were performed. All results presented in

this report are based on fully converged simulations.

DLR’s SMARTy toolbox [44], which is a modular, object-oriented python package, is used as a framework for

implementing the candidate function derived by GEP in TAU and extracting computational information .

The GEP framework EVE∗ (Evolutionary algorithm for the development of Expressions)[14] used in this work is a

Python based tool that symbolically regresses algebraic expressions built on GEP concepts.

IV. Results

A. GEP Models for the Curved Backward-Facing Step

For the GEP training, the curved backward-facing step (“CS test case”) of Bentaleb et al.[28] and Lardeau et al.[29]

was selected. The flow phenomenon studied is a turbulent boundary layer subjected to an adverse pressure gradient.

High-fidelity data from LES simulations are available on the NASA-TMR Website [45]. It is a 2D test case with a
∗provided by Prof. Richard Sandberg, University of Melbourne
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Reynolds number of Re = 13700 based on the step height 𝐻 including a separation in the step area. The LES data

for this test case are from a grid with 23.6 million grid cells. The RANS computations are conducted using a hybrid

mesh with a grid cell count of 42730 (see Fig.6). For the inlet boundary condition, LES data were used to set a velocity

profile inlet boundary condition.

Fig. 6 CS test case: Geometry and mesh

The test case contains several local flow types which cannot be predicted correctly with one set of coefficients for the

pressure-strain term of the SSG model [37]. Although the area of interest is the separated flow region, an improvement

there should not deteriorate the prediction accuracy of other flow areas or other basic test cases. Therefore, the training

process considers the complete flow field including the zero-pressure gradient (ZPG) regions, the adverse pressure

gradient (APG) zone and the separation zone. The skin friction coefficient 𝑐 𝑓 is the target quantity for the model

optimization. The skin friction distribution for the CS test case (see Fig.7a) rapidly changes in the reattachment area

and in the area where the separation starts. This yields an increased sensitivity of the cost function in these two areas.

Thus, the skin friction coefficient is a well suited quantity for the optimization process, considering that the accurate

prediction of these two areas is the focus of this work.

As already stated, the first CFD-driven GEP training includes the pressure-strain correlation coefficients 𝐶𝑖 , only.

With seven different coefficients to optimize, the GEP tool is facing an extensive search pool. From a preliminary

study, it appeared that the coefficient 𝐶2 does not have a major apparent influence on the skin friction coefficient

𝑐 𝑓 . For this reason, it was excluded from in the first CFD-driven GEP training. This leaves six coefficients to be

optimized (𝐶1, 𝐶
∗
1 , 𝐶3, 𝐶

∗
3 , 𝐶4 and 𝐶5). The complexity of the expressions was kept minimal to increase the probability

of numerical convergence. The outcome of the GEP training heavily relies on the initial population, which is created

randomly. For this reason, multiple initial populations were generated until satisfactory results were achieved. A second

CFD-driven GEP training was performed using the model from the first training process as a starting point. In the

second process, 𝐶2 was trained as a function of the same input data as the other coefficients 𝐶𝑖 . In addition, four

parameters of the length-scale equation (𝛼 (𝜔)
𝜔 , 𝛼

(𝜖 )
𝜔 , 𝛽

(𝜔)
𝜔 𝑎𝑛𝑑 𝛽

(𝜖 )
𝜔 ) were optimized as constants with no parameter
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dependency. Two promising models (SSGGEP-mod1 and SSGGEP-mod2) resulted from these two training processes

and the new coefficients are listed in Tab.3 and Tab.4 together with the coefficients of the original model. Note that

these models are solely presented as a proof-of-concept of the GEP method and are not recommended to be used as an

established turbulence model.

Table 3 Comparison of coefficients for the pressure-strain correlation

Model version 𝐶1 𝐶∗
1 𝐶2 𝐶3 𝐶∗

3 𝐶4 𝐶5

SSG original 3.4 1.8 4.2 0.8 1.3 1.25 0.4
SSGGEP-mod1 (𝐼 𝐼𝑆/0.066) + 2 1.0 𝐼̃ 𝐼 𝐼𝑏 −59.301𝑅𝑒𝑡 0.312 0.112 -0.158
SSGGEP-mod2 (𝐼 𝐼𝑆/0.066) + 2 1.0 2.0 −59.301𝑅𝑒𝑡 0.312 0.112 -0.158

Table 4 Comparison of coefficients for the length-scale equation

Model version 𝛼
(𝜔)
𝜔 𝛼

(𝜖 )
𝜔 𝛽

(𝜔)
𝜔 𝛽

(𝜖 )
𝜔

SSG original 0.556 0.44 0.075 0.0828
SSGGEP-mod1 0.475 0.5 0.0675 0.095
SSGGEP-mod2 0.75 0.55 0.095 0.095

Note that, the absence of some input parameters from the SSGGEP models presented does not reflect their relevance.

Other models with very similar training results included other of the five input parameters. As stated previously, there is

no unique solution and different sets of coefficients can lead to a very similar result.

(a) skin friction coefficient 𝑐 𝑓 (b) pressure coefficient 𝑐𝑝

Fig. 7 CS test case: skin friction coefficient and pressure coefficient

The CS LES data alongside the results of the SSG original model and the two modified models (SSGGEP-mod1 and

SSGGEP-mod2) are presented in Fig. 7 to Fig.9. Overall, the new models show an improvement in comparison to the
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original SSG model. For the skin friction coefficient 𝑐 𝑓 , which was the target value during the training process, the first

model SSGGEP-mod1 yields a better agreement with the LES data in the separation region. However, upstream and

downstream of the separation area, SSGGEP-mod1 predicts a slightly decreased value of the skin friction coefficient,

which indicates an overall decreased shear stress in the ZPG region. This is expected to affect the results for basic flow

types, where the original model performs well. The SSGGEP-mod2 model delivers a better prediction of the skin

friction coefficient downstream of the reattachment point and very similar results to the SSG original model upstream

of the separation region, but still has a better agreement with the LES reference data across the separation region in

comparison to the original model. Both models underestimate the pressure gradient close to the separation point but

present an improved agreement in the pressure coefficient 𝑐𝑝 across the separation region, with the SSGGEP-mod1

yielding slightly better results than SSGGEP-mod2.

Table 5 lists the separation and reattachment point for the reference LES data, the original SSG model and the two

modified models. Although the original model presents a slightly better agreement in the separation point with the

reference LES data in comparison with the two modified models, both GEP models show a much better recovery than

the original SSG model with SSGGEP-mod2 predicting a slightly slower recovery than SSGGEP-mod1.

Table 5 CS test case: separation and reattachment points (x/H)

LES SSG original SSGGEP-mod1 SSGGEP-mod2
separation point 0.828373 0.924192 0.953797 1.004217
reattachement point 4.354517 4.759437 4.361017 4.543052

The previous statements are confirmed by the qualitative comparison of the shape of the separated region indicated

by the velocity streamlines in Fig.8. Both SSGGEP models yield a separation bubble shape and size that are closer to

the reference LES computation in comparison to the original SSG model.

Fig. 8 CS test case: shape of separated region
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Note that although the target quantity 𝑐 𝑓 is a surface parameter, the improvements delivered by the GEP training are

not limited to the skin friction coefficient 𝑐 𝑓 . In agreement with the qualitative results shown in Fig. 8, the velocity

profiles displayed in Fig.9 fit the LES data quite well.

Fig. 9 CS test case: streamwise velocity profiles 𝑢/𝑈𝑖𝑛 over separation area

In the following section, the SSGGEP models are tested against the SSG original model for other test cases.

B. Validation cases

In this section, the SSGGEP models are tested against two standard cases: the turbulent flat plate at zero pressure

gradient and the channel flow. Additionally, results of a newly designed test case are presented.

1. Flat plate

The flat plate boundary layer at zero pressure gradient is a standard computational case against which, every

turbulence model should be tested. Thus, computational results are presented here for a flat plate at ZPG with a Reynolds

number 𝑅𝑒𝐿 = 14 × 106 based on the flat plate length 𝐿. The aim of this study is to account for the influence of the

modified models over an equilibrium state flow. The computations were carried out on the finest grid, with 545 × 385

grid points, provided on the NASA-TMR website [46] and were conducted for SSG original model as well as the

SSGGEP models. The results are then compared to the DNS data of Schlatter [47].

Fig.10a shows the skin friction distribution 𝑐 𝑓 over the local Reynolds number 𝑅𝑒𝜃 based on the momentum

thickness 𝜃. The behavior of the skin friction distribution reflects the results obtained for the curved backward-facing

step in Fig.7a. As expected, SSGGEP-mod1 underestimates the skin friction, whereas, SSGGEP-mod2 demonstrates a

very similar behavior compared to the SSG original model for low 𝑅𝑒𝜃 values and a slightly steeper decrease in 𝑐 𝑓 for
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higher values of 𝑅𝑒𝜃 , thus yielding better agreement with the DNS data. Consistent with the skin friction distribution

results, mean velocity profile in inner scaling at 𝑅𝑒𝜃 = 2000 are shown in Fig.10b. In the viscous sublayer, all three

RANS models coincide and are in good agreement with the DNS data. In the buffer layer, the SSGGEP-mod1 is in good

agreement with the DNS reference data whereas the SSGGEP-mod2 model conforms with the original SSG model until

it parts ways with it in the log-law region and outer region which results in a better agreement with the DNS reference

Data. However, by overestimating the mean velocity, SSGGEP-mod1 does not perform well in the latter two regions.

(a) skin friction coefficient 𝑐 𝑓 (b) mean velocity profile for 𝑅𝑒𝜃 = 2000

Fig. 10 Flat plate: skin friction coefficient and velocity profile

Fig.11 illustrates the Reynolds stresses normalized by the friction velocity 𝑢𝜏 at a local Reynolds number 𝑅𝑒𝜃 = 2000.

For the Reynolds normal stress components 𝑢′𝑢′+, 𝑣′𝑣′+ and 𝑤′𝑤′+ a striking similarity between the two modified

models is immediately apparent. This can be attributed to the similarity in the pressure-strain correlation terms of the

two models, which only differ in the coefficient 𝐶2. As already stated, the pressure-strain correlation term is responsible

for redistributing the turbulent kinetic energy among Reynolds stress components [34]. Any change in its coefficients

yields a different redistribution. The consequence of the similar pressure-strain correlation of the SSGGEP models is a

decrease in the Reynolds streamwise stress (Fig.11a) which is compensated by an increase of the Reynolds wall-normal

stress and the Reynolds spanwise stress magnitude (Fig.11b and Fig.11c). Accordingly, the difference between the

coefficients of the pressure-strain correlation of the original model and the ones of the modified models results in a

different redistribution of the Reynolds stresses, as shown in Fig.11.

Unlike the Jakirlić-Hanjalić homogeneous (JHh) RSM model [48], which was especially designed to correctly

predict near wall turbulence behavior, the SSG model is not particularly well adapted for this task [49]. This is reflected

in the results of the Reynolds stresses in Fig.11. Therefore, the results are analyzed by mainly focusing on the log-law

and outer regions (𝑦+ > 200). For 𝑦+ > 200, the Reynolds normal stresses, except for the wall-normal component 𝑣′𝑣′+,
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(a) Reynolds streamwise stress 𝑢′𝑢′+ (b) Reynolds wall-normal stress 𝑣′𝑣′+

(c) Reynolds spanwise stress 𝑤′𝑤′+ (d) Reynolds shear stress 𝑢′𝑣′+

Fig. 11 Flat plate: Reynolds stresses

of the SSGGEP-mod1 as well as SSGGEP-mod2 models are in a better agreement with the DNS reference data when

compared to the original SSG model. Additionally, the dimensionless specific shear stress component −𝑢′𝑣′+, plotted in

Fig.11d over the dimensionless wall distance 𝑦+, is in good agreement in magnitude and shape for all models with the

reference DNS data with a slight improvement in the modified models over the original model for 𝑦+ > 200. Note that

all models display the theoretical minimum of −𝑢′𝑣′+ ≈ 1.

Depicted in Fig.12 is the anisotropy ratio 𝑎12 = −𝑢′𝑣′/𝑘 which exhibits a plateau, from which the Bradshaw constant

(𝑏12 = −𝑎12/2) can be deduced. The Bradshaw hypothesis states that, independent of the pressure gradient, the value

of 𝑏12 is constant over a wide wall-normal region and is equal to 𝑏12 = −0.15 [50]. For 𝑦+ > 200, the anisotropy

constant value of the modified models is virtually identical to the DNS reference data and is aligned with the Bradshaw

hypothesis, unlike the SSG original model. As shown in Fig.12, the two GEP models present an anomalie at the end of
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the plateau where the anisotropy unexpectedly and briefly increases. This is potentially due to the modified values of the

length-scale equation for the near wall and outer regions.

Fig. 12 Flat plate: anisotropy 𝑎12

2. Channel flow

The channel flow is another standard validation test case in the turbulence modeling community. At a high Reynolds

number of 𝑅𝑒𝐻 = 80 × 106 based on the channel width 𝐻, this test case provides a pronounced logarithmic layer to be

exploited for the analysis and evaluation of turbulence models. The computations were performed on the finest grid

with 513 × 161 grid points available on the NASA-TMR Website [51]. The results are extracted from an axial position

of 𝑥 = 500 where it is assumed that fully developed turbulent flow conditions are achieved.

The mean velocity profile is depicted on Fig.13a for the original SSG model, SSGGEP-mod1 and SSGGEP-mod2 in

addition to the theoretical log-law. Both modified models show an improvement over the original SSG model, with

SSGGEP-mod2 exhibiting the closest match to the theoretical log-law.

Until recently, it was assumed that the von-Kármán constant 𝜅 takes a universal value between 0.4 and 0.41.

However, in recent studies it was found that, depending on the flow type, the value can vary between 0.38 and 0.42 [52].

The von-Kármán constant 𝜅 can be deduced from Fig.13b, where the expression 𝑑 (ln𝑦+)/𝑑𝑢+ is plotted against the

dimensionless wall distance 𝑦+. The three models present a wide plateau for 102 < 𝑦+ < 105 where the expression is

more or less constant with a maximum value that corresponds to 𝜅. The original SSG model exhibits a value of 0.451

which is higher than the conventional range for 𝜅, whereas SSGGEP-mod1 and SSGGEP-mod2 result in a value of

0.395 and 0.412 respectively, which is in good agreement with the experimentally measured value range.
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(a) mean velocity profile (b) von-Kármán constant measure

Fig. 13 Channel flow: mean velocity profile and von-Kármán constant measure

3. HiFi-TURB-DLR rounded step

The “HiFi-TURB-DLR rounded step” was designed in the framework of the European project HiFi-TURB [53]

under grand agreement no 814837. The test case is designed to help investigate the effect of an adverse pressure gradient

(APG) on a turbulent boundary layer (TBL). Planned DNS computations aim to provide comparison training data for the

ML step. DNS calculations set limits on the Reynolds number as well as the general dimension of the viscous surface.

This resulted in a 2D planar rounded step and a far-field boundary condition in the region opposite to the body wall (see

Fig. 14). The geometry, which is based on the "Disotell"-test case of NASA [54], as well as the test case set-up is

described in detail in [55].

Fig. 14 HiFi-TURB DLR rounded step: set-up

Originally, the “HiFi-TURB-DLR rounded step” was designed specifically for the purpose of performing data-driven

turbulence modeling based on the high-fidelity data generated within the project. Therefore, three different configurations
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of the test case were designed to provide a parameter variation which is beneficial for the ML task. The configurations

cover different levels of separation by modifying the step height obtaining: incipient separation, moderate separation

and strong separation.

So far, DNS results of the HiFi-TURB-DLR rounded step are available only for the incipient configuration, where no

separation occurs. The DNS computations were performed by project partners from the University of Bergamo (UniBg)

for a Reynolds number of 𝑅𝑒 = 549250 based on the step height 𝐻. The grid for the DNS computations contains 15.01

million hexahedra with quadratic edges. Regarding RANS computations, a fully structured mesh with 266112 grid

points was used.

The purpose of this validation test case is to test, if the results obtained during the training of the CS test case are

also transmittable for a similar APG test case without an occurring separation. In Fig.15, the skin friction coefficient 𝑐 𝑓

as well as the pressure coefficient 𝑐𝑝 are shown for all three models alongside the DNS results.

(a) skin friction coefficient 𝑐 𝑓 (b) pressure coefficient 𝑐𝑝

Fig. 15 HiFi-TURB-DLR rounded step: skin friction coefficient and pressure coefficient

In the region prior to the APG region, the behavior of the models is very similar to the CS test case: SSGGEP-mod1

exhibits an overall reduced skin friction distribution and the SSGGEP-mod2 model differs only slightly from the SSG

original model. The reduced skin friction in SSGGEP-mod1 results in a smaller peak, better agreeing with the DNS

data, whereas, SSGGEP-mod2 starts with a slightly reduced skin friction when compared to the original model, but

demonstrates a similar peak. However, when the pressure gradient drops, SSGGEP-mod1 yields very similar results to

the SSG original models, whereas the SSGGEP-mod2 model shows slight improvement near the minimum skin friction

area and a subsequent match with DNS data in the recovery region (see Fig.15a). Concerning the pressure coefficient,

Fig.15b demonstrates a consistent behavior of the models with SSGGEP-mod1 yielding the best agreement with the

DNS data.

21

D
ow

nl
oa

de
d 

by
 M

ar
ku

s 
R

ue
tte

n 
on

 D
ec

em
be

r 
6,

 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
2-

33
37

 



V. Summary and Outlook
The capabilities of an evolutionary algorithm were evaluated by improving the prediction of a Differential Reynolds

Stress Model applied to a turbulent boundary layer subjected to an adverse pressure gradient with separation. During

the training phase, the coefficients of the pressure-strain correlation term of the SSG model as well as some of the

coefficients of the length-scale-supplying equation were modified. The training resulted in multiple models that showed

improved predictions for the skin friction coefficient over the original SSG model for the curved backward-facing step.

The results of two of these models have been presented in this paper. Subsequently, the models were tested for the

turbulent flat plate, the channel flow and the HiFi-TURB-DLR rounded step, yielding promising results.

In the present work, purposefully, only the coefficients of the pressure-strain correlation model for the Reynolds

stress transport equation as well as selected coefficients from the length-scale equation were taken into account by the

GEP approach as it was decided to limit the training effort. However, other modeled terms exist, e.g. the diffusion

term in the Reynolds stress transport equations. By evaluating candidate expressions by means of the skin friction

coefficient, the coefficients modified during the training process compensate for all errors resulting from the original

model. Additionally, other parameters used in this work were determined to fixed values including the number of

individuals per generation, the termination criterion for the cost function and the number and scaling of input parameters

as well as the input parameters themselves. This clearly shows that there is a need for systematic parameter studies

as well as a more general feature (or input parameter) selection process. Next steps also include training on several

turbulent boundary layers subjected to an adverse pressure gradients of varying strength as well as on reference data

with higher-fidelity, e.g. the DNS results from the three configurations of the HiFi-TURB-DLR rounded step. Although

using the skin friction coefficient as the only target value for model improvements proved to be quite effective, the use of

a multi-objective approach [56] has the potential to further improve the results. Finally, in addition to the standard basic

test cases, the models should be tested for more complex flows like the NASA Juncture Flow Model [57].
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