Renaud, Claire (2022) Deep Learning for tracking Glacier Flows using TOPSAR data. Master's, ENSTA Bretagne.
Full text not available from this repository.
Item URL in elib: | https://elib.dlr.de/188015/ | ||||||||
---|---|---|---|---|---|---|---|---|---|
Document Type: | Thesis (Master's) | ||||||||
Title: | Deep Learning for tracking Glacier Flows using TOPSAR data | ||||||||
Authors: |
| ||||||||
Date: | September 2022 | ||||||||
Refereed publication: | Yes | ||||||||
Open Access: | No | ||||||||
Status: | Published | ||||||||
Keywords: | InSAR, TOPS, interferometric phase, glacier flows | ||||||||
Institution: | ENSTA Bretagne | ||||||||
Department: | Observation Systems and Artificial Intelligence | ||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||
HGF - Program: | Space | ||||||||
HGF - Program Themes: | Earth Observation | ||||||||
DLR - Research area: | Raumfahrt | ||||||||
DLR - Program: | R EO - Earth Observation | ||||||||
DLR - Research theme (Project): | R - Aircraft SAR | ||||||||
Location: | Oberpfaffenhofen | ||||||||
Institutes and Institutions: | Microwaves and Radar Institute Microwaves and Radar Institute > SAR Technology | ||||||||
Deposited By: | Pulella, M.Eng. Andrea | ||||||||
Deposited On: | 06 Dec 2022 17:40 | ||||||||
Last Modified: | 06 Dec 2022 17:40 |
Repository Staff Only: item control page