Tenhumberg, Johannes and Darius, Burschka and Bäuml, Berthold (2022) Speeding Up Optimization-based Motion Planning through Deep Learning. In: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2022-10-23 - 2022-10-27, Kyoto, Japan. doi: 10.1109/IROS47612.2022.9981717. ISBN 978-166547927-1. ISSN 2153-0858.
PDF
5MB |
Official URL: https://ieeexplore.ieee.org/document/9981717
Abstract
Planning collision-free motions for robots with many degrees of freedom is challenging in environments with complex obstacle geometries. Recent work introduced the idea of speeding up the planning by encoding prior experience of successful motion plans in a neural network. However, this 'neural motion planning' did not scale to complex robots in unseen 3D environments as needed for real-world applications. Here, we introduce 'basis point set', well-known in computer vision, to neural motion planning as a modern compact environment encoding enabling efficient supervised training networks that generalize well over diverse 3D worlds. Combined with a new elaborate training scheme, we reach a planning success rate of 100 %. We use the network to predict an educated initial guess for an optimization-based planner (OMP), which quickly converges to a feasible solution, massively outperforming random multi-starts when tested on previously unseen environments. For the DLR humanoid Agile Justin with 19 DoF and in challenging obstacle environments, optimal paths can be generated in 200 ms using only a single CPU core. We also show a first successful real-world experiment based on a high-resolution world model from an integrated 3D sensor.
Item URL in elib: | https://elib.dlr.de/187915/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||
Additional Information: | Video: https://kzbin.info/www/speeding-up-optimization-based-motion-planning-through-deep-learning/hIOtoJV9ptCKoa8 | ||||||||||||||||
Title: | Speeding Up Optimization-based Motion Planning through Deep Learning | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | 20 October 2022 | ||||||||||||||||
Journal or Publication Title: | 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022 | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | Yes | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||
DOI: | 10.1109/IROS47612.2022.9981717 | ||||||||||||||||
ISSN: | 2153-0858 | ||||||||||||||||
ISBN: | 978-166547927-1 | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | Motion and Path Planning; Deep Learning Methods; Learning from Experience | ||||||||||||||||
Event Title: | IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) | ||||||||||||||||
Event Location: | Kyoto, Japan | ||||||||||||||||
Event Type: | international Conference | ||||||||||||||||
Event Start Date: | 23 October 2022 | ||||||||||||||||
Event End Date: | 27 October 2022 | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Robotics | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R RO - Robotics | ||||||||||||||||
DLR - Research theme (Project): | R - Telerobotics | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Institute of Robotics and Mechatronics (since 2013) | ||||||||||||||||
Deposited By: | Tenhumberg, Johannes | ||||||||||||||||
Deposited On: | 05 Dec 2022 12:13 | ||||||||||||||||
Last Modified: | 24 Apr 2024 20:49 |
Repository Staff Only: item control page