Tenhumberg, Johannes und Darius, Burschka und Bäuml, Berthold (2022) Speeding Up Optimization-based Motion Planning through Deep Learning. In: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2022-10-23 - 2022-10-27, Kyoto, Japan. doi: 10.1109/IROS47612.2022.9981717. ISBN 978-166547927-1. ISSN 2153-0858.
PDF
5MB |
Offizielle URL: https://ieeexplore.ieee.org/document/9981717
Kurzfassung
Planning collision-free motions for robots with many degrees of freedom is challenging in environments with complex obstacle geometries. Recent work introduced the idea of speeding up the planning by encoding prior experience of successful motion plans in a neural network. However, this 'neural motion planning' did not scale to complex robots in unseen 3D environments as needed for real-world applications. Here, we introduce 'basis point set', well-known in computer vision, to neural motion planning as a modern compact environment encoding enabling efficient supervised training networks that generalize well over diverse 3D worlds. Combined with a new elaborate training scheme, we reach a planning success rate of 100 %. We use the network to predict an educated initial guess for an optimization-based planner (OMP), which quickly converges to a feasible solution, massively outperforming random multi-starts when tested on previously unseen environments. For the DLR humanoid Agile Justin with 19 DoF and in challenging obstacle environments, optimal paths can be generated in 200 ms using only a single CPU core. We also show a first successful real-world experiment based on a high-resolution world model from an integrated 3D sensor.
elib-URL des Eintrags: | https://elib.dlr.de/187915/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Zusätzliche Informationen: | Video: https://kzbin.info/www/speeding-up-optimization-based-motion-planning-through-deep-learning/hIOtoJV9ptCKoa8 | ||||||||||||||||
Titel: | Speeding Up Optimization-based Motion Planning through Deep Learning | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 20 Oktober 2022 | ||||||||||||||||
Erschienen in: | 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022 | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
DOI: | 10.1109/IROS47612.2022.9981717 | ||||||||||||||||
ISSN: | 2153-0858 | ||||||||||||||||
ISBN: | 978-166547927-1 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Motion and Path Planning; Deep Learning Methods; Learning from Experience | ||||||||||||||||
Veranstaltungstitel: | IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) | ||||||||||||||||
Veranstaltungsort: | Kyoto, Japan | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 23 Oktober 2022 | ||||||||||||||||
Veranstaltungsende: | 27 Oktober 2022 | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Robotik | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R RO - Robotik | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Telerobotik | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) | ||||||||||||||||
Hinterlegt von: | Tenhumberg, Johannes | ||||||||||||||||
Hinterlegt am: | 05 Dez 2022 12:13 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:49 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags