Li, Qingyu and Taubenböck, Hannes and Shi, Yilei and Auer, Stefan and Roschlaub, Robert and Glock, Clemens and Kruspe, Anna and Zhu, Xiao Xiang (2022) Identification of undocumented buildings in cadastral data using remote sensing: Construction period, morphology, and landscape. International Journal of Applied Earth Observation and Geoinformation, 112, pp. 1-11. Elsevier. doi: 10.1016/j.jag.2022.102909. ISSN 1569-8432.
PDF
- Published version
4MB |
Abstract
Buildings are the predominant objects that characterize the urban structure. For many cities, local governments establish building databases for administration as well as urban planning and monitoring. However, newly constructed buildings are often only included with a considerable time delay in the official digital cadastral maps due to processes in the acquisition of data, so-called undocumented buildings. In this regard, detecting undocumented buildings using remote sensing techniques would support the construction of update-to-date building databases with complementary information. In-depth studies on undocumented buildings and their number and location, however, are scarce. Therefore, we exploit a deep learning-based framework to detect undocumented buildings in remote sensing data and propose to derive 2D and 3D morphological parameters as well as landscape metrics., which are capable of depicting the physical forms and spatial structures of undocumented buildings. Furthermore, we exemplify the variabilities of undocumented buildings across space by the differences in morphology and landscape metrics between high and low building density regions. Upon analysis of undocumented buildings in 15 cities in the state of Bavaria, Germany, both state- and cityscale results reveal that most undocumented buildings are located in lower dense regions. This reveals that fragmentation of the landscape by building structures in the state of Bavaria is probably greater than official geospatial data currently documented.
Item URL in elib: | https://elib.dlr.de/187878/ | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||||||||||||||
Title: | Identification of undocumented buildings in cadastral data using remote sensing: Construction period, morphology, and landscape | ||||||||||||||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||||||||||||||
Date: | August 2022 | ||||||||||||||||||||||||||||||||||||
Journal or Publication Title: | International Journal of Applied Earth Observation and Geoinformation | ||||||||||||||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||||||||||||||
Gold Open Access: | Yes | ||||||||||||||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||||||||||||||
Volume: | 112 | ||||||||||||||||||||||||||||||||||||
DOI: | 10.1016/j.jag.2022.102909 | ||||||||||||||||||||||||||||||||||||
Page Range: | pp. 1-11 | ||||||||||||||||||||||||||||||||||||
Publisher: | Elsevier | ||||||||||||||||||||||||||||||||||||
ISSN: | 1569-8432 | ||||||||||||||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||||||||||||||
Keywords: | Undocumented building Building morphology Building landscape Remote sensing Deep learning | ||||||||||||||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||||||||||||||
DLR - Research theme (Project): | R - Remote Sensing and Geo Research, R - Geoscientific remote sensing and GIS methods, R - Artificial Intelligence | ||||||||||||||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science German Remote Sensing Data Center > Geo Risks and Civil Security Remote Sensing Technology Institute > Photogrammetry and Image Analysis | ||||||||||||||||||||||||||||||||||||
Deposited By: | Taubenböck, Prof. Dr. Hannes | ||||||||||||||||||||||||||||||||||||
Deposited On: | 25 Aug 2022 10:03 | ||||||||||||||||||||||||||||||||||||
Last Modified: | 14 Mar 2023 17:54 |
Repository Staff Only: item control page