elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Towards three dimensional aspects of plasticity-induced crack closure: A finite element simulation

Paysan, Florian und Breitbarth, Eric (2022) Towards three dimensional aspects of plasticity-induced crack closure: A finite element simulation. International Journal of Fatigue, 163 (107092). Elsevier. doi: 10.1016/j.ijfatigue.2022.107092. ISSN 0142-1123.

[img] PDF - Nur DLR-intern zugänglich bis 24 August 2024 - Postprintversion (akzeptierte Manuskriptversion)
2MB

Offizielle URL: https://www.sciencedirect.com/science/article/abs/pii/S0142112322003528

Kurzfassung

The mutual interactions between intrinsic (damage) and extrinsic (shielding) mechanisms are essential for understanding fatigue crack growth in ductile materials. In the latter case, plasticity-induced crack closure is the dominating retardation mechanism in the Paris regime. The transition between plane strain and plane stress states leads to a locally different fracture surface contact, which is difficult to access during experiments. In this work, plasticity-induced crack closure under constant amplitude loading of an AlCu4Mg (AA2024) aluminium sheet material is studied from a three-dimensional perspective. An elastic–plastic 3D finite element model of an M(T)160 specimen with a bilinear isotropic hardening model is used to study the evolution of plasticity during fatigue crack growth. Cyclic crack propagation is simulated with the releasing-constraint method. In the results, plasticity-induced crack closure is present up to a load ratio R = 0.3. Detailed investigations of the contact pressure distributions indicate a strong dependence on the stress intensity factors and the sheet thicknesses. The contact pressure distributions on the fracture surface can be divided into three characteristic regions. Near the plastic zone, plastic energy is still induced during the unloading process after the crack is already closed. However, the crack surface contact does not affect the shape of the plastic zone. Additionally, further plastic energy accumulates in the plastic wake region during crack closure within subsequent load cycles, described here as cyclic plastic wake. In summary, the finite element model can reproduce the major features of fatigue crack closure like Kop or Kcl and the three-dimensional and load-dependent evolution of plasticity-induced crack closure.

elib-URL des Eintrags:https://elib.dlr.de/187331/
Dokumentart:Zeitschriftenbeitrag
Titel:Towards three dimensional aspects of plasticity-induced crack closure: A finite element simulation
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Paysan, FlorianFlorian.Paysan (at) dlr.dehttps://orcid.org/0000-0001-5575-1002NICHT SPEZIFIZIERT
Breitbarth, EricEric.Breitbarth (at) dlr.dehttps://orcid.org/0000-0002-3479-9143NICHT SPEZIFIZIERT
Datum:23 August 2022
Erschienen in:International Journal of Fatigue
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:163
DOI:10.1016/j.ijfatigue.2022.107092
Verlag:Elsevier
ISSN:0142-1123
Status:veröffentlicht
Stichwörter:Plasticity-induced crack closure, 3D finite element simulation, Fatigue crack growth, Fracture Mechanics
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Umweltschonender Antrieb
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L CP - Umweltschonender Antrieb
DLR - Teilgebiet (Projekt, Vorhaben):L - Werkstoffe und Herstellverfahren
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Werkstoff-Forschung > Metallische Strukturen und hybride Werkstoffsysteme
Hinterlegt von: Paysan, Florian
Hinterlegt am:04 Nov 2022 08:41
Letzte Änderung:27 Feb 2024 15:02

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.