Qian, Kun and Wang, Yuanyuan and Shi, Yilei and Zhu, Xiao Xiang (2022) Gamma-Net: Superresolving SAR Tomographic Inversion via Deep Learning. IEEE Transactions on Geoscience and Remote Sensing, 60, pp. 1-16. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2022.3164193. ISSN 0196-2892.
PDF
- Published version
10MB |
Abstract
Synthetic aperture radar tomography (TomoSAR) has been extensively employed in 3-D reconstruction in dense urban areas using high-resolution SAR acquisitions. Compressive sensing (CS)-based algorithms are generally considered as the state-of-the art in super-resolving TomoSAR, in particular in the single look case. This superior performance comes at the cost of extra computational burdens, because of the sparse reconstruction, which cannot be solved analytically, and we need to employ computationally expensive iterative solvers. In this article, we propose a novel deep learning-based super-resolving TomoSAR inversion approach, γ-Net, to tackle this challenge. γ-Net adopts advanced complex-valued learned iterative shrinkage thresholding algorithm (CV-LISTA) to mimic the iterative optimization step in sparse reconstruction. Simulations show the height estimate from a well-trained γ-Net approaches the Cramér-Rao lower bound (CRLB) while improving the computational efficiency by one to two orders of magnitude comparing to the first-order CS-based methods. It also shows no degradation in the super-resolution power comparing to the state-of-the-art second-order TomoSAR solvers, which are much more computationally expensive than the first-order methods. Specifically, γ-Net reaches more than 90% detection rate in moderate super-resolving cases at 25 measurements at 6 dB SNR. Moreover, simulation at limited baselines demonstrates that the proposed algorithm outperforms the second-order CS-based method by a fair margin. Test on real TanDEM-X data with just six interferograms also shows high-quality 3-D reconstruction with high-density detected double scatterers.
Item URL in elib: | https://elib.dlr.de/187292/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||
Title: | Gamma-Net: Superresolving SAR Tomographic Inversion via Deep Learning | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | April 2022 | ||||||||||||||||||||
Journal or Publication Title: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||
Volume: | 60 | ||||||||||||||||||||
DOI: | 10.1109/TGRS.2022.3164193 | ||||||||||||||||||||
Page Range: | pp. 1-16 | ||||||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
ISSN: | 0196-2892 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | Complex-valued learned iterative shrinkage thresholding algorithm (LISTA), compressive sensing (CS), synthetic aperture radar (SAR) tomography (TomoSAR), super-resolution. | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
DLR - Research theme (Project): | R - SAR methods, R - Artificial Intelligence | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||
Deposited By: | Qian, Kun (Admin.), Funktional | ||||||||||||||||||||
Deposited On: | 06 Jul 2022 14:14 | ||||||||||||||||||||
Last Modified: | 19 Oct 2023 13:29 |
Repository Staff Only: item control page