Mansour, Islam and Papathanassiou, Konstantinos P. and Haensch, Ronny and Hajnsek, Irena (2022) Towards a Symbiosis of Model-Based and Machine Learning Forest Height Estimation based on TanDEM-X InSAR. In: Proceedings of the European Conference on Synthetic Aperture Radar, EUSAR. European Conference on Synthetic Aperture Radar (EUSAR), 2022-07-25 - 2022-07-27, Leipzig, Germany. ISSN 2197-4403.
Full text not available from this repository.
Abstract
Recently, the German TanDEM-X mission provided valuable acquisitions for developing models for the single-pass single-pol X-band forest height inversion. In this paper, the assessment of the two machine learning approaches to estimate forest height from the interferometric coherence are investigated and compared to the state-of-art physical models over Gabon. The contribution of this work is toward the analysis of two approaches: Approach 1 is an implementation of a conventional ML approach. Approach 2 is the first attempt to integrate model-based knowledge in the ML approach and use a single input variable.
| Item URL in elib: | https://elib.dlr.de/186765/ | ||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||
| Title: | Towards a Symbiosis of Model-Based and Machine Learning Forest Height Estimation based on TanDEM-X InSAR | ||||||||||||||||||||
| Authors: |
| ||||||||||||||||||||
| Date: | July 2022 | ||||||||||||||||||||
| Journal or Publication Title: | Proceedings of the European Conference on Synthetic Aperture Radar, EUSAR | ||||||||||||||||||||
| Refereed publication: | Yes | ||||||||||||||||||||
| Open Access: | No | ||||||||||||||||||||
| Gold Open Access: | No | ||||||||||||||||||||
| In SCOPUS: | Yes | ||||||||||||||||||||
| In ISI Web of Science: | No | ||||||||||||||||||||
| ISSN: | 2197-4403 | ||||||||||||||||||||
| Status: | Published | ||||||||||||||||||||
| Keywords: | TanDEM-X; InSAR; Forest Height;Model-Based Modeling; Machine Learning; | ||||||||||||||||||||
| Event Title: | European Conference on Synthetic Aperture Radar (EUSAR) | ||||||||||||||||||||
| Event Location: | Leipzig, Germany | ||||||||||||||||||||
| Event Type: | international Conference | ||||||||||||||||||||
| Event Start Date: | 25 July 2022 | ||||||||||||||||||||
| Event End Date: | 27 July 2022 | ||||||||||||||||||||
| HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
| HGF - Program: | Space | ||||||||||||||||||||
| HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
| DLR - Research area: | Raumfahrt | ||||||||||||||||||||
| DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
| DLR - Research theme (Project): | R - Artificial Intelligence, R - Polarimetric SAR Interferometry HR | ||||||||||||||||||||
| Location: | Oberpfaffenhofen | ||||||||||||||||||||
| Institutes and Institutions: | Microwaves and Radar Institute > Radar Concepts | ||||||||||||||||||||
| Deposited By: | Mansour, Islam | ||||||||||||||||||||
| Deposited On: | 13 Jun 2022 08:53 | ||||||||||||||||||||
| Last Modified: | 24 Apr 2024 20:48 |
Repository Staff Only: item control page