Mansour, Islam und Papathanassiou, Konstantinos P. und Haensch, Ronny und Hajnsek, Irena (2022) Towards a Symbiosis of Model-Based and Machine Learning Forest Height Estimation based on TanDEM-X InSAR. In: Proceedings of the European Conference on Synthetic Aperture Radar, EUSAR. European Conference on Synthetic Aperture Radar (EUSAR), 2022-07-25 - 2022-07-27, Leipzig, Germany. ISSN 2197-4403.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
Recently, the German TanDEM-X mission provided valuable acquisitions for developing models for the single-pass single-pol X-band forest height inversion. In this paper, the assessment of the two machine learning approaches to estimate forest height from the interferometric coherence are investigated and compared to the state-of-art physical models over Gabon. The contribution of this work is toward the analysis of two approaches: Approach 1 is an implementation of a conventional ML approach. Approach 2 is the first attempt to integrate model-based knowledge in the ML approach and use a single input variable.
| elib-URL des Eintrags: | https://elib.dlr.de/186765/ | ||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
| Titel: | Towards a Symbiosis of Model-Based and Machine Learning Forest Height Estimation based on TanDEM-X InSAR | ||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||
| Datum: | Juli 2022 | ||||||||||||||||||||
| Erschienen in: | Proceedings of the European Conference on Synthetic Aperture Radar, EUSAR | ||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||
| Open Access: | Nein | ||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||||||
| ISSN: | 2197-4403 | ||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||
| Stichwörter: | TanDEM-X; InSAR; Forest Height;Model-Based Modeling; Machine Learning; | ||||||||||||||||||||
| Veranstaltungstitel: | European Conference on Synthetic Aperture Radar (EUSAR) | ||||||||||||||||||||
| Veranstaltungsort: | Leipzig, Germany | ||||||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
| Veranstaltungsbeginn: | 25 Juli 2022 | ||||||||||||||||||||
| Veranstaltungsende: | 27 Juli 2022 | ||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||||||
| HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
| DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz, R - Polarimetrische SAR-Interferometrie HR | ||||||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Hochfrequenztechnik und Radarsysteme > Radarkonzepte | ||||||||||||||||||||
| Hinterlegt von: | Mansour, Islam | ||||||||||||||||||||
| Hinterlegt am: | 13 Jun 2022 08:53 | ||||||||||||||||||||
| Letzte Änderung: | 24 Apr 2024 20:48 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags