Gu, Ziqi and Ebel, Patrick and Yuan, Qiangqiang and Schmitt, Michael and Zhu, Xiao Xiang (2022) Explicit Haze & Cloud Removal for Global Land Cover Classification. In: CVPR 2022 Workshop on Multimodal Learning for Earth and Environment, pp. 1-6. CVPR 2022, 2022-06-19 - 2022-06-24, New Orleans, Louisiana, USA.
PDF
938kB |
Abstract
Haze and clouds in Earth's atmosphere obstruct a seamless monitoring of our planet via optical satellites. Prior work shows that models can learn to adapt and perform remote sensing downstream tasks even in the presence of such sensor noise. So what are the auxiliary benefits of incorporating an explicit cloud removal task, and what is its relation to other tasks in the remote sensing pipeline? We address these questions and show that explicit cloud removal makes models for land cover classification furthermore robust to haze and clouds. Finally, we explore the relation to a self-supervised pre-text task (including abundant cloudy data) and demonstrate how to further ease the need for costly annotations on the land cover classification task.
Item URL in elib: | https://elib.dlr.de/186738/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||||||
Title: | Explicit Haze & Cloud Removal for Global Land Cover Classification | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | July 2022 | ||||||||||||||||||||||||
Journal or Publication Title: | CVPR 2022 Workshop on Multimodal Learning for Earth and Environment | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||
In SCOPUS: | No | ||||||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||||||
Page Range: | pp. 1-6 | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | earth observation remote sensing machine learning for earth observations artificial intelligence for earth observations Künstliche Intelligenz in der Erdbeobachtung Erdbeobachtung Land Cover Classification of satellite images Cloud Removal | ||||||||||||||||||||||||
Event Title: | CVPR 2022 | ||||||||||||||||||||||||
Event Location: | New Orleans, Louisiana, USA | ||||||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||||||
Event Start Date: | 19 June 2022 | ||||||||||||||||||||||||
Event End Date: | 24 June 2022 | ||||||||||||||||||||||||
Organizer: | CVF, IEEE | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||||||
Deposited By: | Beuchert, Tobias | ||||||||||||||||||||||||
Deposited On: | 21 Jun 2022 10:49 | ||||||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:48 |
Repository Staff Only: item control page