Gu, Ziqi und Ebel, Patrick und Yuan, Qiangqiang und Schmitt, Michael und Zhu, Xiao Xiang (2022) Explicit Haze & Cloud Removal for Global Land Cover Classification. In: CVPR 2022 Workshop on Multimodal Learning for Earth and Environment, Seiten 1-6. CVPR 2022, 2022-06-19 - 2022-06-24, New Orleans, Louisiana, USA.
PDF
938kB |
Kurzfassung
Haze and clouds in Earth's atmosphere obstruct a seamless monitoring of our planet via optical satellites. Prior work shows that models can learn to adapt and perform remote sensing downstream tasks even in the presence of such sensor noise. So what are the auxiliary benefits of incorporating an explicit cloud removal task, and what is its relation to other tasks in the remote sensing pipeline? We address these questions and show that explicit cloud removal makes models for land cover classification furthermore robust to haze and clouds. Finally, we explore the relation to a self-supervised pre-text task (including abundant cloudy data) and demonstrate how to further ease the need for costly annotations on the land cover classification task.
elib-URL des Eintrags: | https://elib.dlr.de/186738/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||
Titel: | Explicit Haze & Cloud Removal for Global Land Cover Classification | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | Juli 2022 | ||||||||||||||||||||||||
Erschienen in: | CVPR 2022 Workshop on Multimodal Learning for Earth and Environment | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
Seitenbereich: | Seiten 1-6 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | earth observation remote sensing machine learning for earth observations artificial intelligence for earth observations Künstliche Intelligenz in der Erdbeobachtung Erdbeobachtung Land Cover Classification of satellite images Cloud Removal | ||||||||||||||||||||||||
Veranstaltungstitel: | CVPR 2022 | ||||||||||||||||||||||||
Veranstaltungsort: | New Orleans, Louisiana, USA | ||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
Veranstaltungsbeginn: | 19 Juni 2022 | ||||||||||||||||||||||||
Veranstaltungsende: | 24 Juni 2022 | ||||||||||||||||||||||||
Veranstalter : | CVF, IEEE | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||||||
Hinterlegt von: | Beuchert, Tobias | ||||||||||||||||||||||||
Hinterlegt am: | 21 Jun 2022 10:49 | ||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:48 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags