Skuppin, Nikolai and Hoffmann, Eike and Shi, Yilei and Zhu, Xiao Xiang (2022) Building type classification with incomplete labels. In: International Geoscience and Remote Sensing Symposium (IGARSS), pp. 5844-5847. IEEE. IGARSS 2022, 2022-07-17 - 2022-07-22, Kuala Lumpur, Malaysia. doi: 10.1109/IGARSS46834.2022.9884076. ISBN 978-1-6654-2792-0. ISSN 2153-7003.
PDF
968kB |
Official URL: https://ieeexplore.ieee.org/document/9884076
Abstract
Buildings can be distinguished by their form or function and maps of building types can be used by authorities for city planning. Training models to perform this classification re- quires appropriate training data. OpenStreetMap (OSM) data is globaly available and partly provides information on build- ing types. However, this data can be incomplete or wrong. In this work a U-Net is trained to group buildings into one of the three major function classes (commercial/industrial, residen- tial and other) using incomplete OSM data or ground-truth cadastral data. The model achieves overall accuracies of 72 and 75 percent. Given the OSM data has only around 20 per- cent of the ground truth labels this shows the incomplete data can be used to train for the building classification task.
Item URL in elib: | https://elib.dlr.de/186659/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||
Title: | Building type classification with incomplete labels | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | 19 July 2022 | ||||||||||||||||||||
Journal or Publication Title: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||
DOI: | 10.1109/IGARSS46834.2022.9884076 | ||||||||||||||||||||
Page Range: | pp. 5844-5847 | ||||||||||||||||||||
Publisher: | IEEE | ||||||||||||||||||||
ISSN: | 2153-7003 | ||||||||||||||||||||
ISBN: | 978-1-6654-2792-0 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | Building-types, OSM, Cadastral, Semantic Segmentation, Remote-Sensing | ||||||||||||||||||||
Event Title: | IGARSS 2022 | ||||||||||||||||||||
Event Location: | Kuala Lumpur, Malaysia | ||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||
Event Start Date: | 17 July 2022 | ||||||||||||||||||||
Event End Date: | 22 July 2022 | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||
Deposited By: | Skuppin, Nikolai | ||||||||||||||||||||
Deposited On: | 14 Jun 2022 14:01 | ||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:48 |
Repository Staff Only: item control page