Skuppin, Nikolai und Hoffmann, Eike und Shi, Yilei und Zhu, Xiao Xiang (2022) Building type classification with incomplete labels. In: International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 5844-5847. IEEE. IGARSS 2022, 2022-07-17 - 2022-07-22, Kuala Lumpur, Malaysia. doi: 10.1109/IGARSS46834.2022.9884076. ISBN 978-1-6654-2792-0. ISSN 2153-7003.
PDF
968kB |
Offizielle URL: https://ieeexplore.ieee.org/document/9884076
Kurzfassung
Buildings can be distinguished by their form or function and maps of building types can be used by authorities for city planning. Training models to perform this classification re- quires appropriate training data. OpenStreetMap (OSM) data is globaly available and partly provides information on build- ing types. However, this data can be incomplete or wrong. In this work a U-Net is trained to group buildings into one of the three major function classes (commercial/industrial, residen- tial and other) using incomplete OSM data or ground-truth cadastral data. The model achieves overall accuracies of 72 and 75 percent. Given the OSM data has only around 20 per- cent of the ground truth labels this shows the incomplete data can be used to train for the building classification task.
elib-URL des Eintrags: | https://elib.dlr.de/186659/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | Building type classification with incomplete labels | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 19 Juli 2022 | ||||||||||||||||||||
Erschienen in: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
DOI: | 10.1109/IGARSS46834.2022.9884076 | ||||||||||||||||||||
Seitenbereich: | Seiten 5844-5847 | ||||||||||||||||||||
Verlag: | IEEE | ||||||||||||||||||||
ISSN: | 2153-7003 | ||||||||||||||||||||
ISBN: | 978-1-6654-2792-0 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Building-types, OSM, Cadastral, Semantic Segmentation, Remote-Sensing | ||||||||||||||||||||
Veranstaltungstitel: | IGARSS 2022 | ||||||||||||||||||||
Veranstaltungsort: | Kuala Lumpur, Malaysia | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 17 Juli 2022 | ||||||||||||||||||||
Veranstaltungsende: | 22 Juli 2022 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||
Hinterlegt von: | Skuppin, Nikolai | ||||||||||||||||||||
Hinterlegt am: | 14 Jun 2022 14:01 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:48 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags