Wang, Yi and Ait Ali Braham, Nassim and Albrecht, Conrad M and Mou, LiChao and Zhu, Xiao Xiang (2022) From natural images to spaceborne imagery: an empirical study of self-supervised learning for Earth observation. LPS 2022, 2022-05-23 - 2022-05-27, Bonn, Germany.
PDF
6MB |
Abstract
In this work, we provide an empirical study on the performance of self-supervised learning for spaceborne imagery. Specifically, we conduct extensive experiments on three well-known remote sensing datasets BigEarthNet, SEN12MS and LCZ42 using four representative state-of-the-art SSL algorithms MoCo, SwAV, SimSiam and Barlow Twins. We analyze the performance of SSL algorithms under different data regimes and compare them to vanilla supervised learning. In addition, we explore the impact of data augmentation, which is known to be a key component in the design and tuning of modern SSL methods.
Item URL in elib: | https://elib.dlr.de/186655/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Poster) | ||||||||||||||||||||||||
Title: | From natural images to spaceborne imagery: an empirical study of self-supervised learning for Earth observation | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | 2022 | ||||||||||||||||||||||||
Refereed publication: | No | ||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||
In SCOPUS: | No | ||||||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | self-supervised learning, Earth observation, remote sensing | ||||||||||||||||||||||||
Event Title: | LPS 2022 | ||||||||||||||||||||||||
Event Location: | Bonn, Germany | ||||||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||||||
Event Start Date: | 23 May 2022 | ||||||||||||||||||||||||
Event End Date: | 27 May 2022 | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||||||
Deposited By: | Wang, Yi | ||||||||||||||||||||||||
Deposited On: | 14 Jun 2022 11:48 | ||||||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:48 |
Repository Staff Only: item control page