Wang, Yi und Ait Ali Braham, Nassim und Albrecht, Conrad M und Mou, LiChao und Zhu, Xiao Xiang (2022) From natural images to spaceborne imagery: an empirical study of self-supervised learning for Earth observation. LPS 2022, 2022-05-23 - 2022-05-27, Bonn, Germany.
PDF
6MB |
Kurzfassung
In this work, we provide an empirical study on the performance of self-supervised learning for spaceborne imagery. Specifically, we conduct extensive experiments on three well-known remote sensing datasets BigEarthNet, SEN12MS and LCZ42 using four representative state-of-the-art SSL algorithms MoCo, SwAV, SimSiam and Barlow Twins. We analyze the performance of SSL algorithms under different data regimes and compare them to vanilla supervised learning. In addition, we explore the impact of data augmentation, which is known to be a key component in the design and tuning of modern SSL methods.
elib-URL des Eintrags: | https://elib.dlr.de/186655/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||||||
Titel: | From natural images to spaceborne imagery: an empirical study of self-supervised learning for Earth observation | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 2022 | ||||||||||||||||||||||||
Referierte Publikation: | Nein | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | self-supervised learning, Earth observation, remote sensing | ||||||||||||||||||||||||
Veranstaltungstitel: | LPS 2022 | ||||||||||||||||||||||||
Veranstaltungsort: | Bonn, Germany | ||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
Veranstaltungsbeginn: | 23 Mai 2022 | ||||||||||||||||||||||||
Veranstaltungsende: | 27 Mai 2022 | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||||||
Hinterlegt von: | Wang, Yi | ||||||||||||||||||||||||
Hinterlegt am: | 14 Jun 2022 11:48 | ||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:48 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags