Albrecht, Conrad M and Liu, Chenying and Wang, Yi and Zhu, Xiao Xiang (2022) Weakly Supervised Learning for Earth Observation. 2022 HelmholtzAI conference, 2022-06-02 - 2022-06-03, Dresden, Germany.
PDF
2MB |
Abstract
Earth observation provides a rich source of remotely sensed information for a variety of applications such as global land cover monitoring, environmental impact due to natural disasters, and transformation of urban spaces. Although advances in deep learning provide an agile vehicle to leverage petabytes of earth observation data, it remains a challenge to generate accurate annotation for supervised learning schemes. The presentation taps into our recent works towards solutions. Specifically, we - demonstrate the value of rule-based, auto-generated labels from airborne laser measurements [1,2], and - elaborate on optical-radar sensor feature representation generation through the framework of self-supervised learning for models that require little amount of data labels. [1] C. Albrecht, F. Marianno, and L. Klein, IEEE Big Data conference (2021). [2] C. Albrecht, C. Liu, Y. Wang, L. Klein, X. Zhu, IGARSS conference (2022). [2] Y. Wang, C. Albrecht, and X. Zhu, IGARSS conference (2022).
Item URL in elib: | https://elib.dlr.de/186652/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Lecture) | ||||||||||||||||||||
Title: | Weakly Supervised Learning for Earth Observation | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | 2 June 2022 | ||||||||||||||||||||
Refereed publication: | No | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | No | ||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | remote sensing analytics, weakly-supervised deep learning, big geospatial data, LiDAR data, Sentinel-1/2 data | ||||||||||||||||||||
Event Title: | 2022 HelmholtzAI conference | ||||||||||||||||||||
Event Location: | Dresden, Germany | ||||||||||||||||||||
Event Type: | national Conference | ||||||||||||||||||||
Event Start Date: | 2 June 2022 | ||||||||||||||||||||
Event End Date: | 3 June 2022 | ||||||||||||||||||||
Organizer: | Helmholtz | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
DLR - Research theme (Project): | R - Remote Sensing and Geo Research | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||
Deposited By: | Albrecht, Conrad M | ||||||||||||||||||||
Deposited On: | 03 Jun 2022 10:48 | ||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:48 |
Repository Staff Only: item control page