Albrecht, Conrad M und Liu, Chenying und Wang, Yi und Zhu, Xiao Xiang (2022) Weakly Supervised Learning for Earth Observation. 2022 HelmholtzAI conference, 2022-06-02 - 2022-06-03, Dresden, Germany.
PDF
2MB |
Kurzfassung
Earth observation provides a rich source of remotely sensed information for a variety of applications such as global land cover monitoring, environmental impact due to natural disasters, and transformation of urban spaces. Although advances in deep learning provide an agile vehicle to leverage petabytes of earth observation data, it remains a challenge to generate accurate annotation for supervised learning schemes. The presentation taps into our recent works towards solutions. Specifically, we - demonstrate the value of rule-based, auto-generated labels from airborne laser measurements [1,2], and - elaborate on optical-radar sensor feature representation generation through the framework of self-supervised learning for models that require little amount of data labels. [1] C. Albrecht, F. Marianno, and L. Klein, IEEE Big Data conference (2021). [2] C. Albrecht, C. Liu, Y. Wang, L. Klein, X. Zhu, IGARSS conference (2022). [2] Y. Wang, C. Albrecht, and X. Zhu, IGARSS conference (2022).
elib-URL des Eintrags: | https://elib.dlr.de/186652/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vorlesung) | ||||||||||||||||||||
Titel: | Weakly Supervised Learning for Earth Observation | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2 Juni 2022 | ||||||||||||||||||||
Referierte Publikation: | Nein | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | remote sensing analytics, weakly-supervised deep learning, big geospatial data, LiDAR data, Sentinel-1/2 data | ||||||||||||||||||||
Veranstaltungstitel: | 2022 HelmholtzAI conference | ||||||||||||||||||||
Veranstaltungsort: | Dresden, Germany | ||||||||||||||||||||
Veranstaltungsart: | nationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 2 Juni 2022 | ||||||||||||||||||||
Veranstaltungsende: | 3 Juni 2022 | ||||||||||||||||||||
Veranstalter : | Helmholtz | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Fernerkundung u. Geoforschung | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||
Hinterlegt von: | Albrecht, Conrad M | ||||||||||||||||||||
Hinterlegt am: | 03 Jun 2022 10:48 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:48 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags