Otgonbaatar, Soronzonbold and Datcu, Mihai and Begüm, Demir (2022) Causality for Remote Sensing: An Exploratory Study. In: International Geoscience and Remote Sensing Symposium (IGARSS), pp. 259-262. IEEE. IGARSS 2022, 2022-07-17 - 2022-07-22, Kuala Lumpur, Malaysia. doi: 10.1109/IGARSS46834.2022.9883060.
PDF
437kB |
Official URL: https://ieeexplore.ieee.org/document/9883060
Abstract
Causality is one of the most important topics in a Machine Learning (ML) research, and it gives insights beyond the dependency of data points. Causality is a very vital concept also for investigating the dynamic surface of our living planet. However, there are not many attempts for integrating a causal model in Remote Sensing (RS) methodologies. Hence, in this paper, we propose to use patch-based RS images and to represent each patch-based image by a single variable (e.g. entropy). Then we use a Structural Equation Model (SEM) to study their cause-effect relation. Moreover, the SEM is a simple causal model characterized by a Directed Acyclic Graph (DAG). Its nodes are causal variables, and its edges represent causal relationships among causal variables if and only if causal variables are dependent.
Item URL in elib: | https://elib.dlr.de/186557/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||
Title: | Causality for Remote Sensing: An Exploratory Study | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | 23 May 2022 | ||||||||||||||||
Journal or Publication Title: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | Yes | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||
DOI: | 10.1109/IGARSS46834.2022.9883060 | ||||||||||||||||
Page Range: | pp. 259-262 | ||||||||||||||||
Publisher: | IEEE | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | causality, data science, remote sensing, earth observation | ||||||||||||||||
Event Title: | IGARSS 2022 | ||||||||||||||||
Event Location: | Kuala Lumpur, Malaysia | ||||||||||||||||
Event Type: | international Conference | ||||||||||||||||
Event Start Date: | 17 July 2022 | ||||||||||||||||
Event End Date: | 22 July 2022 | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||
Deposited By: | Otgonbaatar, Soronzonbold | ||||||||||||||||
Deposited On: | 30 May 2022 11:39 | ||||||||||||||||
Last Modified: | 24 Apr 2024 20:47 |
Repository Staff Only: item control page