Otgonbaatar, Soronzonbold und Datcu, Mihai und Begüm, Demir (2022) Causality for Remote Sensing: An Exploratory Study. In: International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 259-262. IEEE. IGARSS 2022, 2022-07-17 - 2022-07-22, Kuala Lumpur, Malaysia. doi: 10.1109/IGARSS46834.2022.9883060.
|
PDF
437kB |
Offizielle URL: https://ieeexplore.ieee.org/document/9883060
Kurzfassung
Causality is one of the most important topics in a Machine Learning (ML) research, and it gives insights beyond the dependency of data points. Causality is a very vital concept also for investigating the dynamic surface of our living planet. However, there are not many attempts for integrating a causal model in Remote Sensing (RS) methodologies. Hence, in this paper, we propose to use patch-based RS images and to represent each patch-based image by a single variable (e.g. entropy). Then we use a Structural Equation Model (SEM) to study their cause-effect relation. Moreover, the SEM is a simple causal model characterized by a Directed Acyclic Graph (DAG). Its nodes are causal variables, and its edges represent causal relationships among causal variables if and only if causal variables are dependent.
| elib-URL des Eintrags: | https://elib.dlr.de/186557/ | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
| Titel: | Causality for Remote Sensing: An Exploratory Study | ||||||||||||||||
| Autoren: |
| ||||||||||||||||
| Datum: | 23 Mai 2022 | ||||||||||||||||
| Erschienen in: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||
| Open Access: | Ja | ||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||
| DOI: | 10.1109/IGARSS46834.2022.9883060 | ||||||||||||||||
| Seitenbereich: | Seiten 259-262 | ||||||||||||||||
| Verlag: | IEEE | ||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||
| Stichwörter: | causality, data science, remote sensing, earth observation | ||||||||||||||||
| Veranstaltungstitel: | IGARSS 2022 | ||||||||||||||||
| Veranstaltungsort: | Kuala Lumpur, Malaysia | ||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
| Veranstaltungsbeginn: | 17 Juli 2022 | ||||||||||||||||
| Veranstaltungsende: | 22 Juli 2022 | ||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||
| HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
| DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||
| Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||
| Hinterlegt von: | Otgonbaatar, Soronzonbold | ||||||||||||||||
| Hinterlegt am: | 30 Mai 2022 11:39 | ||||||||||||||||
| Letzte Änderung: | 24 Apr 2024 20:47 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags