|
Knowledge Augmented Machine Learning with Applications in Autonomous Driving: A Survey
Wörmann, Julian and Bogdoll, Daniel and Srinivas, Gurucharan and Kelsch, Johann and Bührle, Etienne and Chen, Han and Fuh Chuo, Evaristus and Cvejoski, Kostadin and Gleißner, Tobias and van Elst, Ludger and Gottschall, Philip and Griesche, Stefan and Hellert, Christian and Hesels, Christian and Houben, Sebastian and Joseph, Tim and Keil, Niklas and Königshof, Hendrik and Kraft, Erwin and Kreuser, Leonie and Krone, Kevin and Latka, Tobias and Mattern, Denny and Matthes, Stefan and Munir, Mohsin and Nekolla, Moritz and Paschke, Adrian and Alexander Pintz, Maximilian and Qiu, Tianming and Qureishi, Faraz and Tahseen Raza Rizvi, Syed and Reichardt, Jörg and von Rueden, Laura and Rudolph, Stefan and Sagel, Alexander and Schunk, Gerhard and Shen, Hao and Stapelbroek, Hendrik and Stehr, Vera and Tuan Tran, Anh and Vivekanandan, Abhishek and Wang, Ya and Wasserrab, Florian and Werner, Tino and Wirth, Christian and Zwicklbauer, Stefan
(2022)
Knowledge Augmented Machine Learning with Applications in Autonomous Driving: A Survey.
[Other]
Official URL: https://arxiv.org/pdf/2205.04712.pdf AbstractThe existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving. Item URL in elib: | https://elib.dlr.de/186400/ |
---|
Document Type: | Other |
---|
Title: | Knowledge Augmented Machine Learning with Applications in Autonomous Driving: A Survey |
---|
Authors: | Authors | Institution or Email of Authors | Author's ORCID iD | ORCID Put Code |
---|
Wörmann, Julian | fortiss GmbH | UNSPECIFIED | UNSPECIFIED | Bogdoll, Daniel | FZI Forschungszentrum Informatik | UNSPECIFIED | UNSPECIFIED | Srinivas, Gurucharan | UNSPECIFIED | UNSPECIFIED | UNSPECIFIED | Kelsch, Johann | UNSPECIFIED | UNSPECIFIED | UNSPECIFIED | Bührle, Etienne | FZI Forschungszentrum Informatik | UNSPECIFIED | UNSPECIFIED | Chen, Han | Capgemini Engineering | UNSPECIFIED | UNSPECIFIED | Fuh Chuo, Evaristus | Capgemini Engineering | UNSPECIFIED | UNSPECIFIED | Cvejoski, Kostadin | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | UNSPECIFIED | UNSPECIFIED | Gleißner, Tobias | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | UNSPECIFIED | UNSPECIFIED | van Elst, Ludger | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH | UNSPECIFIED | UNSPECIFIED | Gottschall, Philip | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | UNSPECIFIED | UNSPECIFIED | Griesche, Stefan | Robert Bosch GmbH | UNSPECIFIED | UNSPECIFIED | Hellert, Christian | Continental AG | UNSPECIFIED | UNSPECIFIED | Hesels, Christian | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | UNSPECIFIED | UNSPECIFIED | Houben, Sebastian | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | UNSPECIFIED | UNSPECIFIED | Joseph, Tim | FZI Forschungszentrum Informatik | UNSPECIFIED | UNSPECIFIED | Keil, Niklas | Alexander Thamm GmbH | UNSPECIFIED | UNSPECIFIED | Königshof, Hendrik | FZI Forschungszentrum Informatik | UNSPECIFIED | UNSPECIFIED | Kraft, Erwin | Continental AG | UNSPECIFIED | UNSPECIFIED | Kreuser, Leonie | Alexander Thamm GmbH | UNSPECIFIED | UNSPECIFIED | Krone, Kevin | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | UNSPECIFIED | UNSPECIFIED | Latka, Tobias | Elektronische Fahrwerksysteme GmbH | UNSPECIFIED | UNSPECIFIED | Mattern, Denny | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | UNSPECIFIED | UNSPECIFIED | Matthes, Stefan | fortiss GmbH | UNSPECIFIED | UNSPECIFIED | Munir, Mohsin | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH | UNSPECIFIED | UNSPECIFIED | Nekolla, Moritz | FZI Forschungszentrum Informatik | UNSPECIFIED | UNSPECIFIED | Paschke, Adrian | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | UNSPECIFIED | UNSPECIFIED | Alexander Pintz, Maximilian | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | UNSPECIFIED | UNSPECIFIED | Qiu, Tianming | fortiss GmbH | UNSPECIFIED | UNSPECIFIED | Qureishi, Faraz | Valeo Schalter und Sensoren GmbH | UNSPECIFIED | UNSPECIFIED | Tahseen Raza Rizvi, Syed | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH | UNSPECIFIED | UNSPECIFIED | Reichardt, Jörg | Continental AG | UNSPECIFIED | UNSPECIFIED | von Rueden, Laura | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | UNSPECIFIED | UNSPECIFIED | Rudolph, Stefan | Elektronische Fahrwerksysteme GmbH | UNSPECIFIED | UNSPECIFIED | Sagel, Alexander | fortiss GmbH | UNSPECIFIED | UNSPECIFIED | Schunk, Gerhard | Valeo Schalter und Sensoren GmbH | UNSPECIFIED | UNSPECIFIED | Shen, Hao | fortiss GmbH | UNSPECIFIED | UNSPECIFIED | Stapelbroek, Hendrik | Capgemini Engineering | UNSPECIFIED | UNSPECIFIED | Stehr, Vera | Valeo Schalter und Sensoren GmbH | UNSPECIFIED | UNSPECIFIED | Tuan Tran, Anh | Robert Bosch GmbH | UNSPECIFIED | UNSPECIFIED | Vivekanandan, Abhishek | FZI Forschungszentrum Informatik | UNSPECIFIED | UNSPECIFIED | Wang, Ya | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | UNSPECIFIED | UNSPECIFIED | Wasserrab, Florian | Alexander Thamm GmbH | UNSPECIFIED | UNSPECIFIED | Werner, Tino | UNSPECIFIED | https://orcid.org/0000-0002-3512-8667 | UNSPECIFIED | Wirth, Christian | Continental AG | UNSPECIFIED | UNSPECIFIED | Zwicklbauer, Stefan | Continental AG | UNSPECIFIED | UNSPECIFIED |
|
---|
Date: | 10 May 2022 |
---|
Journal or Publication Title: | arxiv.org |
---|
Refereed publication: | No |
---|
Open Access: | Yes |
---|
Gold Open Access: | No |
---|
In SCOPUS: | No |
---|
In ISI Web of Science: | No |
---|
Number of Pages: | 93 |
---|
Status: | Published |
---|
Keywords: | Knowledge Augmented Machine Learning, Informed Machine Learning, Knowledge drive Machine Learning |
---|
HGF - Research field: | Aeronautics, Space and Transport |
---|
HGF - Program: | Transport |
---|
HGF - Program Themes: | Road Transport |
---|
DLR - Research area: | Transport |
---|
DLR - Program: | V ST Straßenverkehr |
---|
DLR - Research theme (Project): | V - KoKoVI - Koordinierter kooperativer Verkehr mit verteilter, lernender Intelligenz |
---|
Location: |
Braunschweig
,
Oldenburg
|
---|
Institutes and Institutions: | Institute of Transportation Systems > Cooperative Systems, BS Institute of Systems Engineering for Future Mobility > Systems Theory and Design |
---|
Deposited By: |
Srinivas, Gurucharan
|
---|
Deposited On: | 07 Nov 2022 11:00 |
---|
Last Modified: | 29 Mar 2023 00:02 |
---|
Repository Staff Only: item control page
|
|