Otgonbaatar, Soronzonbold and Datcu, Mihai and Demir, Begüm (2022) Coreset of Hyperspectral Images on Small Quantum Computer. In: International Geoscience and Remote Sensing Symposium (IGARSS), pp. 4923-4926. IEEE. IGARSS 2022, 2022-07-17 - 2022-07-22, Kuala Lumpur, Malaysia. doi: 10.1109/IGARSS46834.2022.9884273.
PDF
214kB |
Official URL: https://ieeexplore.ieee.org/document/9884273
Abstract
Machine Learning (ML) techniques are employed to analyze and process big Remote Sensing (RS) data, and one well-known ML technique is a Support Vector Machine (SVM). An SVM is a quadratic programming (QP) problem, and a D-Wave quantum annealer (D-Wave QA) promises to solve this QP problem more efficiently than a conventional computer. However, the D-Wave QA cannot solve directly the SVM due to its very few input qubits. Hence, we use a coreset ("core of a dataset") of given EO data for training an SVM on this small D-Wave QA. The coreset is a small, representative weighted subset of an original dataset, and any training models generate competitive classes by using the coreset in contrast to by using its original dataset. We measured the closeness between an original dataset and its coreset by employing a Kullback-Leibler (KL) divergence measure. Moreover, we trained the SVM on the coreset data by using both a D-Wave QA and a conventional method. We conclude that the coreset characterizes the original dataset with very small KL divergence measure. In addition, we present our KL divergence results for demonstrating the closeness between our original data and its coreset. As practical RS data, we use Hyperspectral Image (HSI) of Indian Pine, USA
Item URL in elib: | https://elib.dlr.de/186150/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||
Title: | Coreset of Hyperspectral Images on Small Quantum Computer | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | July 2022 | ||||||||||||||||
Journal or Publication Title: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | Yes | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||
DOI: | 10.1109/IGARSS46834.2022.9884273 | ||||||||||||||||
Page Range: | pp. 4923-4926 | ||||||||||||||||
Publisher: | IEEE | ||||||||||||||||
Series Name: | IEEE | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | quantum computing, small quantum computers, quantum machine learning, support vector machine, coreset, remote sensing, earth observation, hyperspectral images | ||||||||||||||||
Event Title: | IGARSS 2022 | ||||||||||||||||
Event Location: | Kuala Lumpur, Malaysia | ||||||||||||||||
Event Type: | international Conference | ||||||||||||||||
Event Start Date: | 17 July 2022 | ||||||||||||||||
Event End Date: | 22 July 2022 | ||||||||||||||||
Organizer: | IEEE | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence, R - Optical remote sensing | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||
Deposited By: | Otgonbaatar, Soronzonbold | ||||||||||||||||
Deposited On: | 21 Apr 2022 11:27 | ||||||||||||||||
Last Modified: | 24 Apr 2024 20:47 |
Repository Staff Only: item control page