Kondmann, Lukas and Boeck, Sebastian and Bonifacio, Rogerio and Zhu, Xiao Xiang (2022) Early Crop Type Classification With Satellite Imagery - An Empirical Analysis. ICLR 3rd Workshop on Practical Machine Learning in Developing Countries, 2022-04-25 - 2022-04-29, virtual.
PDF
595kB |
Official URL: https://pml4dc.github.io/iclr2022/pdf/PML4DC_ICLR2022_3.pdf
Abstract
Crop type mapping from satellite images is an essential input for food security monitoring systems. Many approaches focus on mapping crop types based on a full time series of a growing season. However, a variety of use cases require predictions already during the growing season which can be technically challenging. In this paper, we experiment with Sentinel-2 and Planet Fusion data to explore their potential for early season crop type classification at different points in the season. We use high-quality field collections from Germany and South Africa as reference data and find that daily revisit times can be advantageous but are no silver bullet for early season classification of crops.
Item URL in elib: | https://elib.dlr.de/186105/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Poster) | ||||||||||||||||||||
Title: | Early Crop Type Classification With Satellite Imagery - An Empirical Analysis | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | 2022 | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | No | ||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||
Page Range: | pp. 1-7 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | Crop Type Mapping, Agriculture, Remote Sensing, Machine Learning | ||||||||||||||||||||
Event Title: | ICLR 3rd Workshop on Practical Machine Learning in Developing Countries | ||||||||||||||||||||
Event Location: | virtual | ||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||
Event Start Date: | 25 April 2022 | ||||||||||||||||||||
Event End Date: | 29 April 2022 | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||
Deposited By: | Kondmann, Lukas | ||||||||||||||||||||
Deposited On: | 13 Apr 2022 11:48 | ||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:47 |
Repository Staff Only: item control page