Kondmann, Lukas und Boeck, Sebastian und Bonifacio, Rogerio und Zhu, Xiao Xiang (2022) Early Crop Type Classification With Satellite Imagery - An Empirical Analysis. ICLR 3rd Workshop on Practical Machine Learning in Developing Countries, 2022-04-25 - 2022-04-29, virtual.
PDF
595kB |
Offizielle URL: https://pml4dc.github.io/iclr2022/pdf/PML4DC_ICLR2022_3.pdf
Kurzfassung
Crop type mapping from satellite images is an essential input for food security monitoring systems. Many approaches focus on mapping crop types based on a full time series of a growing season. However, a variety of use cases require predictions already during the growing season which can be technically challenging. In this paper, we experiment with Sentinel-2 and Planet Fusion data to explore their potential for early season crop type classification at different points in the season. We use high-quality field collections from Germany and South Africa as reference data and find that daily revisit times can be advantageous but are no silver bullet for early season classification of crops.
elib-URL des Eintrags: | https://elib.dlr.de/186105/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||
Titel: | Early Crop Type Classification With Satellite Imagery - An Empirical Analysis | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2022 | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
Seitenbereich: | Seiten 1-7 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Crop Type Mapping, Agriculture, Remote Sensing, Machine Learning | ||||||||||||||||||||
Veranstaltungstitel: | ICLR 3rd Workshop on Practical Machine Learning in Developing Countries | ||||||||||||||||||||
Veranstaltungsort: | virtual | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 25 April 2022 | ||||||||||||||||||||
Veranstaltungsende: | 29 April 2022 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||
Hinterlegt von: | Kondmann, Lukas | ||||||||||||||||||||
Hinterlegt am: | 13 Apr 2022 11:48 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:47 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags