Zhang, Rui and Wang, Yuanyuan and Hu, Jingliang and Yang, Wei and Jie, Chen and Zhu, Xiao Xiang (2022) SAR4LCZ-Net: A Complex-Valued Convolutional Neural Network for Local Climate Zones Classification Using Gaofen-3 Quad-Pol SAR Data. IEEE Transactions on Geoscience and Remote Sensing, 60, p. 4408216. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2021.3137911. ISSN 0196-2892.
PDF
- Postprint version (accepted manuscript)
12MB |
Official URL: https://ieeexplore.ieee.org/document/9661348
Abstract
The recent local climate zones (LCZ) classification scheme provides spatially fine granular descriptions of inner-urban morphology. It is universally applicable to cities worldwide and capable of supporting various urban studies. Although optical and dual-pol SAR data continue to push the frontiers of this task, the potential of quad-pol SAR data for LCZ classification is not yet explored. In this paper we propose a novel complex-valued convolutional neural network (CNN), SAR4LCZ-Net, to tackle this challenge. SAR4LCZ-Net improves the state of the art by exploiting two facts of this specific task: the semantic hierarchical structure of the LCZ classification scheme, and the complex-valued nature of quad-pol SAR data. To validate the performance of our algorithm, we generate a Chinese Gaofen-3 quad-pol SAR data set for LCZ which covers 31 cities around the world. Results show that the proposed SAR4LCZ-Net improves 2.4% on overall accuracy and 4.5% on average accuracy compared to the real-valued CNN with same structure. Gaofen-3 quad-pol SAR data also showed its advantage over the dual-pol Sentinel-1 data. It enhanced 5.0% on overall accuracy and 7.2% on average accuracy in LCZ classification, under a fair comparison with a model trained by Sentinel-1 of the same area.
Item URL in elib: | https://elib.dlr.de/185430/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||||||
Additional Information: | So2Sat | ||||||||||||||||||||||||||||
Title: | SAR4LCZ-Net: A Complex-Valued Convolutional Neural Network for Local Climate Zones Classification Using Gaofen-3 Quad-Pol SAR Data | ||||||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||||||
Date: | March 2022 | ||||||||||||||||||||||||||||
Journal or Publication Title: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||||||
Volume: | 60 | ||||||||||||||||||||||||||||
DOI: | 10.1109/TGRS.2021.3137911 | ||||||||||||||||||||||||||||
Page Range: | p. 4408216 | ||||||||||||||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||||||
ISSN: | 0196-2892 | ||||||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||||||
Keywords: | Quad-pol SAR, complex-valued convolutional neural networks, local climate zones, urban land cover | ||||||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||||||||||
Deposited By: | Wang, Yuanyuan | ||||||||||||||||||||||||||||
Deposited On: | 04 Mar 2022 14:44 | ||||||||||||||||||||||||||||
Last Modified: | 19 Oct 2023 13:36 |
Repository Staff Only: item control page