Zhang, Rui und Wang, Yuanyuan und Hu, Jingliang und Yang, Wei und Jie, Chen und Zhu, Xiao Xiang (2022) SAR4LCZ-Net: A Complex-Valued Convolutional Neural Network for Local Climate Zones Classification Using Gaofen-3 Quad-Pol SAR Data. IEEE Transactions on Geoscience and Remote Sensing, 60, Seite 4408216. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2021.3137911. ISSN 0196-2892.
PDF
- Postprintversion (akzeptierte Manuskriptversion)
12MB |
Offizielle URL: https://ieeexplore.ieee.org/document/9661348
Kurzfassung
The recent local climate zones (LCZ) classification scheme provides spatially fine granular descriptions of inner-urban morphology. It is universally applicable to cities worldwide and capable of supporting various urban studies. Although optical and dual-pol SAR data continue to push the frontiers of this task, the potential of quad-pol SAR data for LCZ classification is not yet explored. In this paper we propose a novel complex-valued convolutional neural network (CNN), SAR4LCZ-Net, to tackle this challenge. SAR4LCZ-Net improves the state of the art by exploiting two facts of this specific task: the semantic hierarchical structure of the LCZ classification scheme, and the complex-valued nature of quad-pol SAR data. To validate the performance of our algorithm, we generate a Chinese Gaofen-3 quad-pol SAR data set for LCZ which covers 31 cities around the world. Results show that the proposed SAR4LCZ-Net improves 2.4% on overall accuracy and 4.5% on average accuracy compared to the real-valued CNN with same structure. Gaofen-3 quad-pol SAR data also showed its advantage over the dual-pol Sentinel-1 data. It enhanced 5.0% on overall accuracy and 7.2% on average accuracy in LCZ classification, under a fair comparison with a model trained by Sentinel-1 of the same area.
elib-URL des Eintrags: | https://elib.dlr.de/185430/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||
Zusätzliche Informationen: | So2Sat | ||||||||||||||||||||||||||||
Titel: | SAR4LCZ-Net: A Complex-Valued Convolutional Neural Network for Local Climate Zones Classification Using Gaofen-3 Quad-Pol SAR Data | ||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||
Datum: | März 2022 | ||||||||||||||||||||||||||||
Erschienen in: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||
Band: | 60 | ||||||||||||||||||||||||||||
DOI: | 10.1109/TGRS.2021.3137911 | ||||||||||||||||||||||||||||
Seitenbereich: | Seite 4408216 | ||||||||||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||||||
ISSN: | 0196-2892 | ||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||
Stichwörter: | Quad-pol SAR, complex-valued convolutional neural networks, local climate zones, urban land cover | ||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||||||||||
Hinterlegt von: | Wang, Yuanyuan | ||||||||||||||||||||||||||||
Hinterlegt am: | 04 Mär 2022 14:44 | ||||||||||||||||||||||||||||
Letzte Änderung: | 19 Okt 2023 13:36 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags