Liu, Xun and Hong, Danfeng and Chanussot, Jocelyn and Zhang, Baojun and Ghamisi, Pedram (2022) Modality Translation in Remote Sensing Time Series. IEEE Transactions on Geoscience and Remote Sensing, 60, pp. 1-14. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2021.3079294. ISSN 0196-2892.
PDF
- Published version
5MB |
Official URL: https://ieeexplore.ieee.org/document/9438952
Abstract
Modality translation, which aims to translate images from a source modality to a target one, has attracted a growing interest in the field of remote sensing recently. Compared to translation problems in multimedia applications, modality translation in remote sensing often suffers from inherent ambiguities, i.e., a single input image could correspond to multiple possible outputs, and the results may not be valid in the following image interpretation tasks, such as classification and change detection. To address these issues, we make the attempt to utilizing time-series data to resolve the ambiguities. We propose a novel multimodality image translation framework, which exploits temporal information from two aspects: 1) by introducing a guidance image from given temporally neighboring images in the target modality, we employ a feature mask module and transfer semantic information from temporal images to the output without requiring the use of any semantic labels and 2) while incorporating multiple pairs of images in time series, a temporal constraint is formulated during the learning process in order to guarantee the uniqueness of the prediction result. We also build a multimodal and multitemporal dataset that contains synthetic aperture radar (SAR), visible, and short-wave length infrared band (SWIR) image time series of the same scene to encourage and promote research on modality translation in remote sensing. Experiments are conducted on the dataset for two cross-modality translation tasks (SAR to visible and visible to SWIR). Both qualitative and quantitative results demonstrate the effectiveness and superiority of the proposed model.
Item URL in elib: | https://elib.dlr.de/185408/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||
Title: | Modality Translation in Remote Sensing Time Series | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | 2022 | ||||||||||||||||||||||||
Journal or Publication Title: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||
Volume: | 60 | ||||||||||||||||||||||||
DOI: | 10.1109/TGRS.2021.3079294 | ||||||||||||||||||||||||
Page Range: | pp. 1-14 | ||||||||||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||
ISSN: | 0196-2892 | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | Remote sensing, Time series analysis, Task analysis, Synthetic aperture radar, Semantics, Optical sensors, Optical imaging | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||||||
Deposited By: | Rösel, Dr. Anja | ||||||||||||||||||||||||
Deposited On: | 23 Feb 2022 12:54 | ||||||||||||||||||||||||
Last Modified: | 19 Oct 2023 14:23 |
Repository Staff Only: item control page