Albrecht, Conrad M. and Marianno, Fernando and Klein, Levente J (2021) AutoGeoLabel: Automated Label Generation for Geospatial Machine Learning. In: 2021 IEEE International Conference on Big Data (Big Data), pp. 1779-1786. 2021 IEEE International Conference on Big Data (Big Data), virtual. doi: 10.1109/BigData52589.2021.9672060.
![]() |
PDF
- Only accessible within DLR bis February 2023
7MB |
Official URL: https://ieeexplore.ieee.org/document/9672060
Abstract
Abstract—A key challenge of supervised learning is the availability of human-labeled data. We evaluate a big data processing pipeline to auto-generate labels for remote sensing data. It is based on rasterized statistical features extracted from surveys such as e.g. LiDAR measurements. Using simple combinations of the rasterized statistical layers, it is demonstrated that multiple classes can be generated at accuracies of ∼0.9. As proof of concept, we utilize the big geo-data platform IBM PAIRS to dynamically generate such labels in dense urban areas with multiple land cover classes. The general method proposed here is platform independent, and it can be adapted to generate labels for other satellite modalities in order to enable machine learning on overhead imagery for land use classification and object detection.
Item URL in elib: | https://elib.dlr.de/148608/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||
Title: | AutoGeoLabel: Automated Label Generation for Geospatial Machine Learning | ||||||||||||
Authors: |
| ||||||||||||
Date: | December 2021 | ||||||||||||
Journal or Publication Title: | 2021 IEEE International Conference on Big Data (Big Data) | ||||||||||||
Refereed publication: | Yes | ||||||||||||
Open Access: | No | ||||||||||||
Gold Open Access: | No | ||||||||||||
In SCOPUS: | No | ||||||||||||
In ISI Web of Science: | No | ||||||||||||
DOI : | 10.1109/BigData52589.2021.9672060 | ||||||||||||
Page Range: | pp. 1779-1786 | ||||||||||||
Status: | Published | ||||||||||||
Keywords: | Geospatial analysis, Laser radar, Big data applications, Weak supervision | ||||||||||||
Event Title: | 2021 IEEE International Conference on Big Data (Big Data) | ||||||||||||
Event Location: | virtual | ||||||||||||
Event Type: | international Conference | ||||||||||||
Organizer: | IEEE | ||||||||||||
HGF - Research field: | other | ||||||||||||
HGF - Program: | other | ||||||||||||
HGF - Program Themes: | other | ||||||||||||
DLR - Research area: | Digitalisation | ||||||||||||
DLR - Program: | D CPE - Cyberphysical Engineering | ||||||||||||
DLR - Research theme (Project): | D - urbanModel | ||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||
Deposited By: | Albrecht, Conrad M | ||||||||||||
Deposited On: | 03 Feb 2022 10:18 | ||||||||||||
Last Modified: | 04 Feb 2022 09:58 |
Repository Staff Only: item control page