Albrecht, Conrad M. und Marianno, Fernando und Klein, Levente J (2021) AutoGeoLabel: Automated Label Generation for Geospatial Machine Learning. In: 2021 IEEE International Conference on Big Data, Big Data 2021, Seiten 1779-1786. 2021 IEEE International Conference on Big Data (Big Data), 2021-12-15 - 2021-12-18, virtual. doi: 10.1109/BigData52589.2021.9672060. ISBN 978-1-6654-3902-2. ISSN 2639-1589.
PDF
7MB |
Offizielle URL: https://ieeexplore.ieee.org/document/9672060
Kurzfassung
Abstract—A key challenge of supervised learning is the availability of human-labeled data. We evaluate a big data processing pipeline to auto-generate labels for remote sensing data. It is based on rasterized statistical features extracted from surveys such as e.g. LiDAR measurements. Using simple combinations of the rasterized statistical layers, it is demonstrated that multiple classes can be generated at accuracies of ∼0.9. As proof of concept, we utilize the big geo-data platform IBM PAIRS to dynamically generate such labels in dense urban areas with multiple land cover classes. The general method proposed here is platform independent, and it can be adapted to generate labels for other satellite modalities in order to enable machine learning on overhead imagery for land use classification and object detection.
elib-URL des Eintrags: | https://elib.dlr.de/148608/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | AutoGeoLabel: Automated Label Generation for Geospatial Machine Learning | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | Dezember 2021 | ||||||||||||||||
Erschienen in: | 2021 IEEE International Conference on Big Data, Big Data 2021 | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
DOI: | 10.1109/BigData52589.2021.9672060 | ||||||||||||||||
Seitenbereich: | Seiten 1779-1786 | ||||||||||||||||
ISSN: | 2639-1589 | ||||||||||||||||
ISBN: | 978-1-6654-3902-2 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Geospatial analysis, Laser radar, Big data applications, Weak supervision | ||||||||||||||||
Veranstaltungstitel: | 2021 IEEE International Conference on Big Data (Big Data) | ||||||||||||||||
Veranstaltungsort: | virtual | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 15 Dezember 2021 | ||||||||||||||||
Veranstaltungsende: | 18 Dezember 2021 | ||||||||||||||||
Veranstalter : | IEEE | ||||||||||||||||
HGF - Forschungsbereich: | keine Zuordnung | ||||||||||||||||
HGF - Programm: | keine Zuordnung | ||||||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||||||
DLR - Schwerpunkt: | Digitalisierung | ||||||||||||||||
DLR - Forschungsgebiet: | D CPE - Cyberphysisches Engineering | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | D - urbanModel, R - Künstliche Intelligenz | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||
Hinterlegt von: | Albrecht, Conrad M | ||||||||||||||||
Hinterlegt am: | 03 Feb 2022 10:18 | ||||||||||||||||
Letzte Änderung: | 04 Jun 2024 14:47 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags