elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

6-DoF Grasp Learning in Partially Observable Cluttered Scenes

Olefir, Dmitry (2021) 6-DoF Grasp Learning in Partially Observable Cluttered Scenes. Masterarbeit, Technische Universität München.

[img] PDF
11MB

Kurzfassung

The key element of the efficient interaction of an intelligent robot with its im- mediate environment is object manipulation - a task that current data-driven methods reshape into various methods aimed at object localization, classification, segmentation, and grasp pose estimation. This work is concerned with the grasp pose estimation, namely with the implications of 6-DoF grasp pose estimation for partially visible cluttered scenes. In this thesis, two methods are proposed to address the problem of collision management of the grasp proposals and the full target scene due to the partial visibility and cluttered nature of a scene. The first explores the possibility of embedding input data with differential geometrical shape information, namely the modified mean curvature measure, to improve the qualitative results of grasp estimation. The second method proposes a supervisor network architecture termed Collision-GraspNet that classifies grasp proposals with respect to collision with the scene, including its occluded parts, and improves the invalid proposals via iterative pose sampling. The first proposed approach is tested on the Contact-GraspNet model and compared with GraspNet architecture baseline performance. In its turn, Collision-GraspNet is compared with an analytical proposal filtering approach employed by GraspNet, and evaluated in three stages using various datasets. Grasp supervisor architecture Collision-GraspNet outperformed the respective analytical approach and showed high confidence threshold flexibility. However, curvature-embedded data failed to improve upon the baseline model performance.

elib-URL des Eintrags:https://elib.dlr.de/148348/
Dokumentart:Hochschulschrift (Masterarbeit)
Titel:6-DoF Grasp Learning in Partially Observable Cluttered Scenes
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Olefir, DmitryDmitry.Olefir (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:20 Mai 2021
Erschienen in:6-DoF Grasp Learning in Partially Observable Cluttered Scenes
Referierte Publikation:Nein
Open Access:Ja
Status:veröffentlicht
Stichwörter:unknown object grasping, grasp ranking, collision detection, partial point cloud, robotics
Institution:Technische Universität München
Abteilung:Department of Informatics
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Robotik
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R RO - Robotik
DLR - Teilgebiet (Projekt, Vorhaben):R - Multisensorielle Weltmodellierung (RM) [RO]
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Robotik und Mechatronik (ab 2013) > Perzeption und Kognition
Hinterlegt von: Sundermeyer, Martin
Hinterlegt am:25 Jan 2022 14:38
Letzte Änderung:25 Jan 2022 14:38

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.