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Abstract

The key element of the efficient interaction of an intelligent robot with its im-
mediate environment is object manipulation - a task that current data-driven
methods reshape into various methods aimed at object localization, classification,
segmentation, and grasp pose estimation. This work is concerned with the grasp
pose estimation, namely with the implications of 6-DoF grasp pose estimation for
partially visible cluttered scenes.
In this thesis, two methods are proposed to address the problem of collision

management of the grasp proposals and the full target scene due to the partial
visibility and cluttered nature of a scene. The first explores the possibility of
embedding input data with differential geometrical shape information, namely
the modified mean curvature measure, to improve the qualitative results of grasp
estimation. The second method proposes a supervisor network architecture termed
Collision-GraspNet that classifies grasp proposals with respect to collision with the
scene, including its occluded parts, and improves the invalid proposals via iterative
pose sampling.
The first proposed approach is tested on the Contact-GraspNet model and

compared with GraspNet architecture baseline performance. In its turn, Collision-
GraspNet is compared with an analytical proposal filtering approach employed by
GraspNet, and evaluated in three stages using various datasets.
Grasp supervisor architecture Collision-GraspNet outperformed the respective

analytical approach and showed high confidence threshold flexibility. However,
curvature-embedded data failed to improve upon the baseline model performance.
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1 Introduction

Technological advancements of the last decades have paved the way for the mas-
sive automation, advances in medicine and the rise of Artificial Intelligence are
transforming the world around us. When it comes to robotics, the fast pace of
advancements in mechanics and electronics are pushing the boundaries of what is
possible in terms of structural design, while researchers actively pursue the Holy
Grail of robotics - making robots intelligent. This combined effort has changed
the way we see and use robots: from bulky power-hungry manipulators performing
primitive repetitive tasks on assembly lines to swarms of robots managing huge
warehouses with little human intervention. However, the abilities of such robots
are still limited, with limits being imposed by a multitude of factors. One such
factor is the lack of data-driven methods for solving tasks robots face in complex
real-world environments. While it is certainly true that serious progress has been
made made in this field in the past 20 years, the final goal of turning a robot
into a fully autonomous intelligent agent capable of solving complex tasks within
dynamic environments is still unreachable.
One of the most promising approaches to achieving the aforementioned goal

are the learning-based methods that allow a robot to learn from complex data
to provide its systems with crucial parameters for planning and executing the
tasks. In this regard, the task of robotic manipulation is exceptionally important.
From the hardware standpoint, robots are already capable of performing high-
precision movements, and a variety of end effectors and 3D sensors that become
increasingly available reduces the effort of obtaining this data. This is paving
the way towards seamless integration of robots into various industries, where
they will be able to perform manipulation tasks semi-autonomously. Given the
composition of sufficiently robust learning-based system and suitable hardware,
robotic manipulators will no longer be restricted to static controllable environments
like factories, but rather "invade" everyday spaces where they will be able to work
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1 Introduction

alongside humans. One example of robotic technology that has achieved such
integration, albeit to a limited degree, is collaborative robots. They have become a
proof that, given the right design of the components, robots can be incorporated
into various businesses to boost the performance or production output, regardless
of how small the production pipeline is. Yet they still require a highly controlled
workspace and perform optimally in static environments.

In order to become truly efficient and autonomous at robotic manipulation task,
a robotic system has to have an ability to reliably obtain 3D measurements of
the target areas in space, localize and even classify the objects present in this
areas, estimate and execute the best grasp pose according to some metric given the
constraints imposed by the kinematics of the manipulator and structural complexity
of the target area. Achieving such level of autonomy and awareness will allow
such robotic systems to populate the places where historically only humans could
function. Consider an operating room - a facility found withing virtually any
modern hospital. The vast majority of surgical operations taking place in such an
environment requires a team of highly trained professionals, each required to show
exceptional precision and concentration during the surgeries that may span hours
upon hours. The aforementioned intelligent robot could alleviate the workload
imposed on the staff during the surgery by performing tasks such as disinfecting the
tools and supplying them to the surgeon, and even operating some of the equipment.
This would allow to not only potentially reduce the team size (and consequentially
the cost of surgeries), but also reduce the probability of a human-induced mistake.

Such integration based on effective control of robots in their surroundings is
not yet feasible for many scenarios, but the researchers are actively investigating
the ways of learning from 3D measurement data to imbue robots with relevant
experience. Such 3D information aims to capture the geometry of the environment
and can take many forms. However, within the scope of this thesis the following
representations were handled.

1.1 Structured data

The 3D data representations described below have an underlying Euclidean structure.
In particular, the properties of the data structured on a grid such as having a global
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parametrization and a common coordinate system are preserved. The following
representations are examples of structured data:
RGB-D images. Representing 3D data as RGB-D images is becoming in-

creasingly popular due to the rising availability of RGB-D sensors, e.g. Kinect by
Microsoft, or RealSense from Intel. Such representation provides a 2.5D information
about captured area by obtaining color information (RGB) along with a depth
map (D). This data representation is illustrated in Figure 1.1.

Figure 1.1: RGB (left panel) and depth (right panel) images from the GraspNet-
1Billion dataset [Fan+20].

Voxel grids. Voxel grids represent 3D data as a regular grid in the three-
dimensional space and allow to model 3D data by describing how the 3D object is
distributed through the scene. Viewpoint information can be encoded via labeling
the voxels that are occupied as visible, occluded, or self-occluded. It must be noted,
that the applicability of voxel grids for modeling of high-resolution data is severely
limited since the representation always describes both occupied and non-occupied
parts of the scene, thus enforcing enormous requirements in regards to memory
storage. This data representation is shown in Figure 1.2.

1.2 Non-structured data

The following 3D data representations are the non-structured representations.
3D point clouds. This representation describes 3D data as a set of unstructured

3D points that approximate the geometry of 3D objects. Absence of the connectivity
information leads to ambiguity of the surface information. This data representation
is illustrated in Figure 1.3.

3



1 Introduction

Figure 1.2: Voxel occupancy representation of a 3D structure according to
[Wan+12].

Figure 1.3: 3D point cloud of a fork gripper model. Contains 5000 points.

Meshes. Meshes represent 3D data as a set of polygons (faces) that are described
in terms of a set of vertices that define the 3D coordinate of the mesh in space. It
is one of the most popular representations of 3D shapes. Vertices are associated
with a connectivity list which describes how these vertices are connected to each
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other. Geometry of the meshes can be characterized as a subset of the Euclidean
space following the grid-structured data. This data representation is shown in
Figure 1.4.

Figure 1.4: Mesh of a simplified fork gripper: the gripper with the visualized faces
(left panel); the gripper with only the wireframe of the mesh visualized
(right panel). Mesh contains 32 vertices and 32 faces.

Various representation allow for a multitude of approaches to explore the possible
solutions for a number of sub-tasks that constitute the problem of vision-based
robotic grasping.

1.3 Problem Statement

In this thesis arguably the most important and difficult sub-task of the vision-based
robotic grasping is explored, namely 6-DoF grasp estimation in partially observed
cluttered scenes, as it has to deal and address numerous limitations imposed,
such as high structural complexity of the scene and quite limited available 3D
information about the scene.

Grasp estimation on the partially visible scene involves a lot of reasoning about
the occluded space. It means that those grasps that are predicted for an object
that is partially visible can be invalid during the execution of the grasp due to
the, for example, predicted grasp pose leading to the collision with the occluded
part of the object. In this thesis two possible way of alleviating this constraint
are proposed. First proposes using data embedded with differential geometrical
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scene information during learning and inference of a chosen baseline architecture
Contact-GraspNet, in order to provide information about possible shape of the
occluded parts of the target scene. Second, in its turn, proposes an architecture
Collision-GraspNet that is capable of reliable classification and modification of
colliding grasp pose proposals using the same partially observed scene, the gripper
point cloud representation, and a proposed grasp pose as an input.

1.4 Thesis Structure

This thesis is structured as follows. Chapter 1 describes the motivation and provides
a problem statement. In Chapter 2, a brief overview of the existing approaches
to the various vision-based robotic grasping tasks is given. Chapter 3 presents an
overview of publicly available datasets and of the two datasets that are extensively
used throughout the work. Chapter 4 relays the core methods and approaches
tested in this work. Chapter 5 provides an overview of the conducted experiments
as well as the analysis of the obtained results. Future steps are discussed in chapter
6. Finally, the outcomes of work presented hereby is summarized in chapter 7.
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2 Related work

The aim of this chapter is to provide a brief overview of the available Vision-
based Robotic grasping methods. The first section concerns classical computer
vision approaches. In the second section, the attention is shifted towards learning-
based methods, comparing end-to-end and modular approaches. The third section
considers specifically the task of grasp estimation in two cases: 2D planar and
6-DoF grasp estimation. The fourth section highlights the methods of 6-DoF
grasp estimation on complete and partial shapes, while the closing section lists the
differences of the grasp estimation of single objects versus cluttered scenes.

2.1 Classical computer vision approaches

As a fundamental robotic manipulation task, robotic grasping is well-defined and
researched. Up to the beginning of the current millennium, the field was dominated
by the analytical approaches. Classical computer vision methods explored the main
components of what would compose the vision-based robotic grasping field and
developed a multitude of methods that can be roughly classified based upon the
specific subtask of robotic grasping they consider as follows:
Object localization methods employ methods of shape primitives like ellipses

and polygons fitting in 2D [FF+96]; [DP73] and localization using 3D primitives like
in RANdomSAmple Consensus (RANSAC) [FB81], or Hough-like voting methods
[RVDH05]. Salient object detection methods in 2D [Jia+13] and 3D [Pen+14]
were also proposed and investigated. Object pose estimation methods were
also considered in the classical computer vision research. In various works, both 2D
cases using hand-crafted global and local descriptors [Low99]; [RD05]; [BTVG06];
[Rub+11], and 3D cases [Joh97]; [Fro+04]; [RBB09]; [Ald+11] were investigated.
The topics of 2D planar grasp [Dom+14]; [JMS11a]; [VPB19] and of 6-DoF
grasp [Mil+03]; [BK10]; [PP15] pose estimation were also researched.
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As it is usually the case with such methods, they required various often unrealistic
assumptions, such as sensor models being noiseless, models of the robot kinematics
and dynamics being perfect, or having the object model and it’s relative alignment in
regards to the manipulator available [MLS94]; [Shi96]. Such assumptions resulted
in the limited applicability of the mentioned approaches in realistic scenarios,
especially in the dynamically changing environments.

2.2 Learning-based approaches

In the last decade, the advancements in the 3D data acquisition hardware and
machine learning algorithms lead to data-driven approaches taking the lead in
the field of robotic grasping. The main divide that delineates the learning based
approaches in the field lies in the way the grasping task is treated. On one hand,
it can be thought of as a single monolithic pipeline that the data-driven method
tries to implement as a whole. The approaches that treat the problem in such a
manner are called end-to-end. On the other hand, modular approaches constitute
a perhaps more flexible alternative by breaking the global task of grasping into
components and trying to build algorithms that solve the sub-tasks related to just
a single such module. A more detailed review of the discussed methodologies is
presented in the following subsection.

2.2.1 End-to-end learning

Treating the complex task of grasping as a single pipeline of perception, planning
and execution produces monolithic system is mostly characteristic of reinforcement
learning (RL) based methods. Learning grasping directly from self-supervision
of a system’s interaction with the environment allows such a system to become
progressively better at grasping though the repeated experience, and, possibly,
to achieve relatively high degree of efficiency without any substantial human
intervention or control.
While supervised learning for grasping setups usually uses large (thousands to

millions) amounts of grasp examples for hundreds of different objects, for RL
methods this regime is troublesome: assuming learning is primarily on-policy, the
system has to revisit already seen objects again and again to avoid forgetting
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them, which makes proper generalization to diverse sets of novel objects quite hard.
Off-policy RL methods are a preferred choice for tasks such as grasping, where
the wide variety of previously seen objects is crucial for generalization. Recent
research on deep Q-networks enables designing closed-loop grasping strategies. Some
demonstrate this by proposing a Q-function optimization technique to provide a
semi-scalable approach for vision-based robotic manipulation applications [D.+18],
while others use deep Q-learning for learning grasping strategies, for applications in
limited spaces and cluttered target environments [A.+18], though those are often
limited to execution on single and/or basic geometric target objects [IP17]. Main
disadvantages are constituted by the notorious instability of RL, which manifests
in the difficulties during tuning. In theory, this step is not necessary, though the
reward function is often manually tuned regardless [RIP17]. End-to-end learning
strategy of joint perception and execution leads to reduced generalization to novel
objects. Moreover, the trial and error approach in collision-sensitive and highly
structured real environments is far from being an easily available option for a real
robotic setup due to the danger of damaging the said environment or expensive
robotic system, unless carried out in simulation.

2.2.2 Modular learning

Outside of the RL framework, the vision-based robotic grasping task is divided
into three key tasks instead of treating it as a single pipeline. Those key tasks
are explored separately, and the robotic grasping system itself is often viewed as a
complex system composed of the following sub-modules:

• the grasp detection system;

• the grasp planning system;

• the control/execution system.

The grasp detection system, the primary task of which is to determine the way to
grasp an object, is often viewed the key component in the pipeline and is being
actively researched. Such system is shown in Figure 2.1 in a simplified manner.
As shown in 2.1, the grasp detection task can be broken down into the three
main subtasks which are discussed in the following subsections: object localization
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(determining where the object is located in 3D space), object pose estimation
(determining the orientation of the object in 3D space) and grasp estimation
(determining the grasp parameters).

Figure 2.1: The grasp detection system according to [Du+20]: (left panel) robotic
arm, depth sensor, parallel gripper, and a target object placed on a
planar work surface. (right panel) Grasp detection system composed of
target object localization system, object pose estimation system, and
grasp estimation system.

2.2.2.1 Object localization

As mentioned above, the first task in the grasping pipeline is that of object
localization. It is usually can be treated as one of three following cases.

In the case of object localization without classification, the system outputs
the approximate regions of the objects without knowing their categories. This case
is typically considered in grasp-related robotic tasks, for example, in industrial
environments, where objects present have fixed shapes. According data-driven
solutions exist for 2D cases [Zha+15]; [Zha+16]; [LH16]; [LHY18]; [Lin20]; [Qi+19],
and 3D RGB-D cases [Pia+19]; [Pan+20].

The second case is object detection with classification, where model provides
bounding boxes of the target objects in the scene as well as their categories. Both
2D and 3D cases are represented by two-stage and one-stage methods. Two-stage
methods first propose candidate objects and select the most suitable candidate
in the second step. One-stage models skip the region-proposal step. For 2D case
several two-stage [Gir+14]; [Gir15]; [Ren+15]; [Dai+16]; [Lin+17] and one-stage
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[Red+16]; [RF17]; [RF18]; [BWL20] methods exist. Same is true for two-stage
[Qi+18]; [XAJ18]; [Lia+19b]; [Shi+20]; [SWL19]; [Xie+20b] and one-stage [ZT18];
[YML18]; [JMS11a]; [SR20]; [Naj+20] methods for 3D.
While 2D object detection provides sufficient information for the execution of

2D planar robotic grasping tasks, mere detection in 3D does is not sufficient for
the actual execution of a grasp. However, the estimated 3D bounding boxes could
prove useful for collision avoidance.
The third case is object instance segmentation where the task is to output

the pixel- or point- regions of the target objects along with their categories. The
general idea is to provide specific regions of the target object described by the
input data. Yet again, there are several two-stage [He+17]; [Che+18]; [Fan+20]
and one-stage [Xie+20a]; [Che+19]; [Tia+19b]; [Che+20] methods for 2D case, as
well as for 3D [Yi+19]; [HDN19]; [Eng+20]; [LF19]; [Zha+20a]; [Han+20].

2D and 3D object instance segmentation are highly important problems in
robotic grasping setups. 2D cases are already widely used in respective tasks,
while segmentation on 3D input still relies on the segmentation of RGB component
of RGB-D input. 3D object instance segmentation develops quite rapidly as a
research field, thus the degree of its integration into robotic grasping relies on the
improvement of the corresponding methods in terms of speed and performance.

2.2.2.2 Object pose estimation

The second main task is object pose estimation, where the general idea is to
estimate the 6D object pose to allow the generation of grasp poses for the already
known objects. The methods that attempt to solve this task can be broadly
categorized as follows.
Correspondence-based methods utilize deep 3D descriptors for matching 3D

points that are representative and discriminative [MSG20]; [Zen+17a]; [SSH20];
[Hu+19]; [HBM20].
Template-based methods are aimed at accomplishing the partial registration

task via taking a pair of point clouds as an input and extracting discriminative
features using 3D deep networks with later regression of the relative transformations
between each point cloud [GGF20]; [Sar+19]; [WS19a]; [Aok+19]; [WS19b]. Some
methods learn orientation implicitly [Sun+18], while others directly estimate the
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6D pose from the input image [Liu+19].
In voting-based methods, each input 3D point contributes towards the es-

timation of the 6D object pose via providing one or more votes within a direct
[Wan+19] or indirect [Yu+20]; [Wan+20] voting paradigm.

2.2.2.3 Grasp estimation

The third main task, which is the focus of this work, is grasp estimation, which
allows estimating a gripper pose in the camera coordinate system. Grasp estimation
implicitly includes all the previous tasks, and estimates the poses directly on the
input target scene. This task exists in two setups: 2D planar grasp estimation,
where the grasp is constrained from one direction and the grasp pose is reduced to
a 3D pose; and 6-DoF estimation, where the gripper can approach and interact
with the target objects from various directions. Both cases are discussed in detail
in the following sections.

2.3 2D vs. 6-DoF grasp estimation

During the times when capturing depth data was not a trivial task, the field of
grasp estimation was mainly concerned with planar grasp estimation. 2D planar
grasps are constrained from one directions and lie in a planar workspace, thus the
information is reduced from 6 to only 3 degrees of freedom (2D in-plane position
plus 1D gripper rotation angle). Oriented rectangles are the go-to configuration
description for planar grasps that define them uniquely [Lev+16]; [PG15]; [MG17];
[Zen+18]. Methods for 2D planar grasping can be categorized into methods of
grasp contact points evaluation and methods of oriented rectangles evaluation.
Grasp contact points in 2D planar case uniquely define the gripper’s pose, and

the corresponding data-driven methods realize the estimation of the most probable
grasp contact points via pixel-wise grasp affordances. Some of those methods are
concerned with the prediction of pixel-wise affordances with respect to the set of
grasping primitive actions. Such methods generate grasp qualities for each pixel of
the input image, and then the set of points with the highest value of affordance
is to be executed [Zen+18]; [Cai+19]. This can be achieved, for example, via
inferring dense affordance probability maps for grasping primitive actions by using
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2.3 2D vs. 6-DoF grasp estimation

fully convolutional networks [Zen+18], or via learning antipodal grasps by using
fully convolutional residual networks [Cai+19]. A slightly different take on this is
Generative Grasping Convolutional Neural Network which predicts pixel-wise grasp
quality and pose [MCL18].

Methods of oriented rectangle evaluation exploit the fact that 2D oriented
rectangles also define a unique gripper pose. In this case, deep learning methods
are divided into three categories: classification-, regression-, and detection-based
methods. Classification-based methods train classifiers to evaluate candidate grasps,
and select the one with the highest assigned score [LLS15]; [PG16]. Regression-
based methods train a model to provide grasp location and orientation directly
[RA15]; [Zha+19]. Detection-based methods use the reference anchor box, to assist
the generation and evaluation of grasps [DDC20]; [CXV18].

In general, the main drawback of a planar grasp representation is defined by the
fact that such representation limits the diversity of the outputted grasps: grasping
of an arbitrary object might be simply impossible given the imposed constraints.
This effectively limits the applicability of 2D grasp estimation methods in many real
world scenarios. On the other hand, estimation in 3D with 6-DoF is not subject to
such constraints. The difference between the two approaches is visualized in Figure
2.2, where 6-DoF ground truth grasps from GraspNet-1Billion dataset [Fan+20]
are converted into planar grasps, resulting in a drastic loss of variability.

Figure 2.2: 6-DoF (left panel) to 2D planar (right panel) grasp conversion using
GraspNet-1Billion dataset’s ground truth grasps.

For 6-DoF grasping, the gripper has more options when accessing the object: the
additional degrees of freedom allow for a much more variable pose of the gripper,
which is an essential component to execute the grasping. A detailed review of the
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available 6-DoF grasping methods is presented in the following section.

2.4 Grasping on complete vs. partial shapes

As mentioned above, the 6-DoF grasping provides more flexibility when solving
the task of robotic grasping making it an advantageous alternative to the 2D
approaches. 6-DoF grasp estimation methods can be divided into two groups:
methods based on the complete shape and methods based on the partial shape.
Both groups are discussed in the following subsections.

2.4.1 Grasping on complete shapes

6-DoF grasp estimation methods on complete shapes are useful for cases when
obtaining full scene information is possible, for example via explanatory movements
or via multi-view fusions. Subsequently, the poses of the known objects can be
estimated and the corresponding grasp poses can be obtained on the complete 3D
shape. The resulting 6-DoF grasp poses can be subsequently transformed from
the object coordinate system to the camera frame. Additionally, a complete shape
of the scene or object can be reconstructed from the single-view point cloud, and
then used for grasp pose estimation.

In the case of the estimation using the full shape, many deep learning methods
are utilized as tools for assisting the robotic grasp tasks. Some methods, such as
[Zen+17b], estimate the poses through partial registrations, where multiple views
of a scene are segmented and label with a fully convolutional neural network. The
object models that were scanned prior are placed into the segmentation result to
produce their poses. In contrast, there are methods that achieve object and grasp
pose estimation in a joint fashion using convolutional neural network pipelines, such
as SilhoNet [BJR19]. Some methods utilize RGB-D data for object segmentation
and partial registration to obtain object poses, from which suitable grasp poses can
be computed with high accuracy [Won+17]. DenseFusion [Wan+19] demonstrates
high success rate in assisting with practical robot grasping tasks by proposing a
heterogeneous architecture that processes RGB and depth data sources individually
and extracts pixel-wise dense feature embedding with consequential iterative pose
refinement.
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Naturally, the applicability of the aforementioned methods is determined by
the availability of the full scene information. Obtaining such information poses
a separate problem for which a multitude of solutions have been proposed. For
instance, the methods that employ shape completion in order to estimate grasps
aim at solving this challenge by producing the complete geometry from the partial
observations, thus making the estimation of grasp poses more precise.

Among such approaches there are those that reconstruct the geometry from the
partial point cloud. For example, the general idea proposed in [Var+17] is enabling
the robotic grasping via shape reconstruction by employing a 3D convolutional
neural network (CNN) to actually complete the shape. For the objects that are to be
grasped, a high-polygon mesh is generated, with a low-polygon mesh generated for
the rest of the scene. The resulting grasps are evaluated using GraspIt! framework
[MA04]. [LVK19] proposes a deep neural network shape reconstruction architecture,
and a probabilistic planning method that uses the shape uncertainties highlighted
by the reconstructor network to produce grasps. PointSDF by [Mer+20] trains a
continuous signed distance function embedding for the partial object point cloud,
and a grasp success model in simulation, enabling geometric awareness in a grasping
system. [Tos+20] uses two networks, first of which produces grasp proposals, while
the second employs 3D shape reconstruction to refine the candidate grasps.

In contrast to the aforementioned methods that work with partial point clouds,
there are approaches that perform reconstruction using single-view RGB(-D) data.
[Wan+18] learns shape priors the predict the object’s shape from a single RGB
image. Such priors are learned from large-scale shape repositories and the incorpo-
rated tactile sensing observations are subsequently used to refine the shape. Deep
Geometry-aware Grasping Network (DGGN) [Yan+18] produces geometry-aware
grasps by learning 6-DoF grasp poses from RGB-D data and a complete shape
produced by shape generation network. ClearGrasp [Saj+20] tackles the problem of
estimating the geometry of the transparent objects by using a single RGB-D image
and deep convolutional networks to intersurface normals, masks of transparent
surfaces, and occlusion boundaries, that are then used to refine the initial depth
estimates.

In general, the main drawback of the methods that employ shape completion
stems from the fact, that grasping accuracy directly depends on the accuracy of
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shape completion, which in turn is challenging to generalize properly to novel
shapes. When using single-view data, the lack of information about the geometry
of the object which is not visible to the camera from a single given pose, has a
critical effect on the completion accuracy.

2.4.2 Grasping on partial shapes

The methods summarized herein do not require complete shapes to estimate
grasping, making them more flexible as compared to the counterparts that do
require such information. One group of methods that operate on partial shapes
transfers grasps from already known existing shapes. This means that the methods
in this group try to find some sort of correspondence between the obtained partial
data and some existing complete data that is available a priori. This typically
happens after a classification step if it is ruled that both are of the same category. If
the object is deemed similar to those that are in the database, correspondence-based
methods can transfer the grasp points from complete 3D object to partial-view
object. [Tia+19a] proposes a method that assumes the similarity of topology
and shapes between the example and the novel objects in order to produce grasp
configurations. Active learning approach produces grasp contact mapping between
the known and novel objects based on the 3D segmentation of the novel object that
takes into account geometrical and semantics information. In its turn, DenseObject
Net [FMT18] employs a self-supervised approach to learn the dense descriptors
that are used as a representation for the robotic manipulation, which enables
manipulation of deformed objects and manipulation in clutter. Dense Geometrical
Correspondence Matching network (DGCM-Net) [PPV20] utilizes metric learning
to encode geometrically similar objects into a feature space to obtain relevant
experience for novel object via nearest neighbor search.

In contrast to the aforementioned methods, following methods compose a group
that operate directly on partial geometrical data, namely partial point clouds. GPD
[Pas+17b] produces candidate grasps in a region of interest that are encoded in a
stacked multi-channel image, where each candidate is assigned a score via evaluation
with a convolutional network. [LYC20] generates candidate grasps via uniform
sampling over the whole 3D space, to predict the grasp quality and reachability
using 3D convolutional network. PointnetGPD [Lia+19a] produces candidate grasps
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via random sampling and evaluates them by direct analysis using 3D deep neural
network PointNet [Qi+17b] backbone. Ground truth grasps are labeled using the
force-closure metric. 6-DoF Grasp-Net [MEF19a] employs Variational Auto-encoder
to sample candidate grasps to refine them with an evaluator network. For both
steps PointNet++ backbone [Qi+17a] is used. [Mur+20] can be viewed as a direct
improvement of 6-DoF Grasp-Net, that additionally learns a collision checker model
that uses the raw point cloud of the scene and of the gripper model. Collision
checker refines the rejected grasp candidates using Metropolis-Hastings sampling
that yields similar performance to the gradient-based one while it is computationally
twice as fast. S4G [Qin+20] model is based on the single-shot proposal network
with Pointnet++ backbone that produces amodal grasp proposals using regression
directly in contrast to 6-DoF Grasp-net that uses encoding and decoding. REGNet
[Zha+20b] is a three-stage network composed of Score Network that selects positive
points with high grasp confidence, Grasp Refine network that generates grasp
proposals on these points, and Refine network that refines the grasps based on
local features.

GraspNet [Fan+20] learns the approaching direction and operation parameters of
grasps in a decoupled manner with an additional grasp affinity field that is designed
to improve the grasping robustness. Contact-Graspnet [MS21] is an end-to-end
generative network that estimates grasps directly in cluttered scenes. It employs
a novel grasp representation that includes the contact points of the parallel jaw
gripper.

Due to the inherent flexibility of 6-DoF grasp pose estimation and its applicability
to various real-world scenarios, it considered and exclusively used in this thesis.
Furthermore, since the majority of methods work with point clouds, this work
considers point cloud data representation as well.

2.5 Grasping in cluttered scenes

Learning-based methods for grasping are mainly focused on dealing with isolated
objects on planar surfaces [MEF19a]. This work, however, is focused on object
grasping in a cluttered scenario. This problem is significantly more complex due to
the restricted access to the objects, since the immediate environment is occupied
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by other objects, and the usable workspace thus severely limited. Cluttered setup
can also be described by two distinct situations.

The bin-picking case is characterized by the scene’s object being located in a
stable pile. As an example one may imagine a case of an industrial bin-picking
scenario, where a literal bin is filled with parts and objects that require picking up.
Such case is shown in the Figure 2.3. Here a lot of geometry-related information is
occluded by the neighboring objects. Collisions imposed by the executed grasps
are not critical since the objects are already in a pile.

Figure 2.3: Examples of a bin-picking scene. Taken from [MG17]

In contrast, in the case of structured clutter, the scene is characterized by a
set of tightly packed objects of different sizes. A descriptive example is a stocked
shelf of a kitchen’s pantry or of a supermarket. In comparison to bin-picking,
structured clutter does not allow for dense distribution of grasps, since any, even
minor unintended collision may lead to serious consequences and failure of the task.
Objects in structured clutter have less stable safe poses since they are not combined
in a pile, and collision avoidance becomes exceptionally important. An example
of such setup is shown in Figure 2.4. Additionally, occlusions imposed by other
objects are not only more likely to happen, but also restrict the possibilities of
perception, and in combination with possible contact interactions between objects
affect the predictions quality. Thus, acquiring high-quality information may require,
for example, using multiple views that in their turn would require gathering via
exploration, which is not possible in confined spaces.
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Figure 2.4: Examples of simple structured clutter scenes. Taken from [Mur+20]

As an example of a real world application, one may imagine a case where a
robot is ordered to pick up a heavy glass jar from the aforementioned pantry.
Even if the predicted gripper pose is not leading to direct collision, executing
such a grasp can be hard, since the planned path must be collision free with the
environment and still kinematically possible (given the manipulator configuration
and constraints) for the robot at the same time. Some methods that tackle the
problem of grasping in structured clutter exist. In the scope of this thesis two
solutions are used, namely GraspNet [Fan+20] and Contact-GraspNet [MS21].
Former one proposes an end-to-end grasp pose prediction network given point
cloud inputs, where approaching direction and operation parameters are learned
in a decoupled manner. Additionally, GraspNet employs a Model-Free Collision
Manager (MFCM) module that analytically filters the predicted grasp poses on the
grounds of them colliding with a voxelized input cloud. Contact-GraspNet proposes
an end-to-end generative grasp network to predict a distribution of 6-DoF grasps
directly in cluttered scenes using novel grasp representation, which includes the
contact points of the parallel jaw gripper, thus the 3D points in an input point
cloud are viewed as potential grasp contacts. The proposed method reduces the
dimensionality for grasp representation to 4-DoF via rooting of the full 6-DoF
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grasp pose in the recorded scene point cloud, which additionally includes predicted
grasp with. During inference local regions of interest can be optionally extracted
around the 3D centroid of point cloud segments in order to maximize the number
of potential contact points.

None of the aforementioned approaches address the limitations imposed by partial
visibility of the scene directly during training. In this thesis two ways of addressing
the limited geometrical information are proposed: first aims at employing differential
geometrical information to embed training and testing data in order to qualitatively
improve predictions, while the second addresses the problem of collisions in a shape
of a new architecture Collision-GraspNet that aims to reliably classify proposal
grasps as colliding or valid using the same partially visible scene, and to modify
colliding proposals to bring them out of collision while keeping them suitable for
actual grasp execution.
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Datasets are the key to the success of learning-based methods. Following sections
provide an overview of some of the publicly available datasets and of the two
datasets that are extensively used in this work, namely GraspNet-1Billion and
ACRONYM.

3.1 Overview

In terms of data-driven grasping, publicly available datasets differentiate in, among
other parameters, the type of the provided observations, grasp label nature, and the
amount of variability the dataset presents. Table 3.1 provides a brief comparison
of the publicly available datasets for grasping.

It was already mentioned, that a significant portion of learning-based methods are
concerned with predicting planar grasps, which are represented by rectangular grasps
[JMS11b]; [Lev+16]; [DDC18]; [Zha+19]. Some datasets, however, provide grasp
6-DoF poses [KBS15]; [Mah+17]; [VMT17]; [EMF20]. Additionally, there is a choice
between providing real measurements in RGB-D form [Lev+16]; [JMS11b]; [Zha+19]
or synthetic ones in the form of depth images [KBS15]; [Mah+17] or RGB-D
[DDC18]; [VMT17]. Arguably, the key difference between the datasets is the way the
grasp labels are computed: real robot executions [Lev+16], analytical computation
[Fan+20]; [Mah+17], or physics simulation [DDC18]; [KBS15]; [VMT17]. In the
majority of cases, datasets provide grasps for isolated objects [JMS11b]; [DDC18];
[MEF19a], rather then for groups of objects that make up a cluttered scene [Fan+20];
[Lev+16]; [Zha+19]. In some cases, grasps from isolated objects can be reused
in cluttered scenes, discarding those that collide [EMF20]. The last, but not the
least important key factor, is the quantity of grasps provided in the dataset. Some
datasets provide a variety of objects [Lev+16]; [Zha+19], while some contain a
lot of grasps for a limited selection of objects [EMF19]; [Fan+20]. There is no
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clear evidence regarding what is more important for successful grasp generalization,
therefore in some cases datasets attempt to balance object-to-grasp ratio [EMF20].
It must be noted, that higher geometric (i.e. object) variability can be achieved by
random shape generation [Tob+18].

3.2 GraspNet-1Billion

GraspNet-1Billion [Fan+20] is a large-scale dataset providing richly and densely
annotated cluttered scenes. Figure 3.1 shows an overview of the key components
of the dataset.

Figure 3.1: The key components of GraspNet-1Billion dataset. RGB-D images are
taken using both RealSense camera and Kinect camera from different
views. The 6D pose of each object, the grasp poses, the rectangle grasp
poses and the instance masks are annotated. Taken from [Fan+20].

The dataset contains 88 objects with high quality 3D mesh models. 32 objects
that are suitable for grasping are selected from the YCB dataset [Cal+17], 13
adversarial objects are selected from DexNet2.0 [Mah+17] and 43 more objects are
unique to GraspNet-1Billion. This ensures geometrical diversity of the dataset.
For cluttered scene data collection, two popular RGB-D cameras, namely Intel

RealSense 435 and Kinect 4 Azure, were chosen to simultaneously capture the scene.
8− 12 objects were randomly selected for each scene, where they were placed in a
cluttered manner. The robot arm with cameras moved along a fixed trajectory that
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covered 256 distinct view-points on a quarter sphere and a synchronized image pair
from both RGB-D cameras as well as camera poses were saved for each view-point.
Totaling 190 scenes, GraspNet-1Billion contains 48640 images per camera type. 100
scenes are used for training, the remaining 90 - for evaluation. These 90 scenes are
split in 3 groups: 30 scenes composed of objects present in the training data (seen
data), 30 scenes composed of objects similar to those in the training scenes (similar
data), and 30 scenes composed of novel objects (novel data). The amount of grasp
poses for each scene varies from 3, 000, 000 to 9, 000, 000, and in total the dataset
contains around 1.1 billion grasp poses. Additionally, rectangle based grasp poses,
object masks and bounding boxes are provided. Each frame is also associated with
a camera pose, thus multi-view point cloud can be fused.

Grasp poses are annotated using an analytical computation method. GraspNet-
1Billion adopts an improved [MEF19b] force-closure metric [Ngu88]; [Pas+17a]:
given a grasp pose, the associated object and the friction coefficient µ, force-closure
metric outputs a binary label indicating whether the grasp is antipodal under that
coefficient. With ∆µ = 0.1 as interval, the coefficient decreased gradually from 1 to
0.1 step by step until the grasp is not antipodal anymore. The grasps are assigned
a score that lies in (0, 1] range, such that a grasp with a lower friction coefficient
µ has a higher probability of success. Grasps are projected to the corresponding
objects based on the annotated 6D object poses.

3.3 ACRONYM

ACRONYM [EMF20] is a dataset for robot grasp planning based on physics
simulation. Figure 3.2 provides an example of geometric variety and grasp density
provided by the dataset.

ShapeNetSem [SCH15] dataset is used as a source for object meshes. Meshes
that contain more than one connected component are excluded, the rest is made
watertight [HSG18] to ensure correct behavior during physics simulation for which
uniform density is also assumed. In total, ACRONYM contains 8872 objects from
262 different categories.

The dataset focuses on parallel-jaw grippers (DOF = 1), specifically it uses the
model of the Franka Panda gripper. When generating grasp proposals, it is assumed
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Figure 3.2: ACRONYM contains 2000 parallel-jaw grasps for 8872 objects from
262 categories, totaling 17.7M grasps. Taken from [[EMF20]].

that grasps are unsuccessful if an object and the gripper collide or if the intersection
between the object and the volume between the gripper fingers is empty. For each
object, 2000 grasp proposals are generated that pass this check during rejection
sampling, which in uses an antipodal sampling scheme. ACRONYM accumulates
17.7M grasps in such a manner.

FleX physics simulator [Mac+14] is used to evaluate and label each grasp.
Objects, gripper palm and fingers are simulated as rigid bodies. In addition to
isolated objects, ACRONYM provides a mechanism to procedurally generate scenes
with structured clutter. These scenes are generated by sampling a support object.
To label such scenes with grasps, the grasp labels for isolated objects are reused,
and the grasps that would collide with any scene geometry are labeled as failures.
To obtain observations for generated scenes, ACRONYM provides an interface to
render depth images, segmentation masks, and point clouds.
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Cornell
[JMS11b]

No Real Manual 8k 240 33 Single

Jaquard
[DDC18]

No Sim Phys. sim. 1.1M 11k 100 Single

VMRD+
[Zha+19]

No Real Manual 100k 15K(31) ≈ 6.5 Multi

Levine
[Lev+16]

No Real Real-world 650k N/A N/A Bin

Kappler
[KBS15]

Yes Sim Phys. sim. 300k 700(80) ≈ 430 Single

Dex-Net
[Mah+17]

Yes Sim Analytical 6.7M 1500(50) 100 N/A

Veres
[VMT17]

Yes Sim Phys. sim. 50k N/A (64) N/A Single

6-DoF GraspNet
[MEF19a]

Yes Sim Phys. sim. 7.07M 206(6) 43k Single

Eppner
[EMF19]

Yes N/A Phys. sim. 1B 21 47.8M Single

GraspNet-1Billion
[Fan+20]

Yes Real Analytical 1.1B 88 12.5M Multi

ACRONYM
[EMF20]

Yes Sim Phys. sim. 17.7M 8872(262) 2k Multi

Table 3.1: Comparison of publicly available grasp datasets: name of the dataset
with a reference, grasp type, observation type (real or simulated), label
type (manual, physics simulation, analytical), total number of grasps,
number of objects (categories), number of grasps per object/scene, and
scene type.
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Grasp estimation in partially observable structured cluttered scenes, which was
discussed in detail in sections 2.3 and 2.4, involves reasoning on the occluded parts
of the scene. Additional limitations imposed by the structured clutter nature of
the observed scene make estimation of grasps that are viable in real setups more
challenging. For example, estimation of the grasps that are not in collision with
the occluded parts of the scene becomes quite important.
Firstly, two architectures concerned with 6-DoF grasp pose estimation and a

corresponding evaluation pipeline are described. Then, the approaches proposed
to tackle the aforementioned limitations are described. Two paths were explored.
First approach explores the possibility of preprocessing the input data, namely
partially observed scene in a form of a point cloud with additional geometrical
information that can be analytically computed offline, to improve the quality of
predictions. Second one proposes the architecture Collision-GraspNet, which learns
to classify grasp proposals on partially observed data as colliding or non-colliding,
thus enabling potential filtering or refinement of such proposals.

4.1 Grasp estimation

In the following sections, the two architectures used as a basis for experiments are
explained. The first model is used as a baseline model, while the second one is
a base model for the proposed extensions. Additionally, the adopted evaluation
pipeline is described.

4.1.1 GraspNet

Fang et. al [Fan+20] proposed an end-to-end grasp pose prediction network given
point cloud inputs, where the approaching direction and operation parameters are
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learned in a decoupled manner. The following subsections discuss the used grasp
representation and three main structural elements of GraspNet, namely Approach,
Operation and Tolerance Networks.

4.1.1.1 Grasp representation

The gripper frame of GraspNet is shown in Figure 4.1. Grasp pose detection aims
to predict the orientation and translation of the gripper under the camera frame,
as well as the width of the gripper. GraspNet represents the gripper pose G as:

Figure 4.1: Grasp representation in GraspNet. (left panel) Coordinate frame of
the gripper. (right panel) Pose reformulation: approaching vector V ,
approaching distance D, in-plane rotation R, gripper width W . Taken
from [Fan+20].

G = [R t w], (4.1)

where R ∈ R3×3 is the gripper orientation, and t ∈ R3×1 is the center of grasp, while
w ∈ R is the gripper width. The grasp estimation problem is further reformulated
as follows: for the grasp points on the surface of target objects, predict the
approaching vectors, approaching distances and in-plane rotations along with the
gripper width.

4.1.1.2 Architecture

An overview of the GraspNet composition is shown in Figure 4.2.
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Figure 4.2: Overview of GraspNet network. Point encoder-decoder extracts the
features of an input point cloud N × 3, samples M points with C

features channels. ApproachNet predicts the approaching vectors that
are used to group and align the points in cylinder regions. OperationNet
predicts the operation parameters while ToleranceNet predicts grasp
robustness. Taken from [Fan+20].

ApproachNet (shown in yellow) estimates grasp points jointly since some
directions are not feasible for grasping due to occlusion. PointNet2 [Qi+17a] is used
as a backbone. Given an input point cloud of size N × 3, a new set of points with
C feature channels is produced by the base network (shown in red). M points are
subsampled using farthest point sampling to cover the scene in full. The backbone
is composed out of four set abstraction and two feature propagation layers.

The shape of the output of the ApproachNet itself is M × (2 + V ): feasible
approaching vectors are classified into V predefined viewpoints, and for each point
confidence of whether this points is graspable or not is predicted.

Each candidate point gets an assigned binary label that indicates graspability.
Points that do not belong to objects have negative labels, and points that do belong
to objects are filtered to obtain those that have at least one graspable ground-truth
in the 5 mm radius neighborhood. Such points get a 1 graspable label, while the
rest is ignored and do not contribute during training.

Each resulting graspable point is subject to approaching vector sampling in the
camera frame around the said point. In the following, vij denotes the vector from
jth view of ith graspable point. Reference ground truth vector v̂ij is searched for
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in the sphere space around ith point. Additionally, only references that lie withing
5 degree bound are considered. Target function is defined as follows:

LA({ci}, {sij}) = 1
Ncls

∑
i

Lcls(ci, c∗i )+λ1
1

Nreg

∑
i

∑
j

c∗i1(|vij , v∗ij | < 5◦)Lreg(sij , s∗ij),

(4.2)
where ci is the binary prediction of the graspability of the point i, c∗i is 1 if the
point is graspable and 0 otherwise. sij is the predicted confidence score for jth

view of the point i, while sij is the maximum grasp ground truth confidence for the
current view. Indicator function 1(.) constraints the loss on approaching vectors
that has a reference in the 5 degree bound, while |vij , v∗ij | defines the mentioned
degree difference. Lcls is the two-class softmax loss, and Lreg is the smooth L1

loss.

OperationNet predicts operational parameters such as in-plane rotation, ap-
proaching distance and gripper width using the approaching vectors.

Prior to feeding the predicted vectors to the OperationNet, a representation
of each proposed grasp candidate is created. Approaching distances are divided
into K bins, and for each distance dk the points from the inside of the cylinder
centered at the approaching vector are sampled. Each sampled point is brought
into a coordinate system with the origin lying at the grasp point and Z-axis being
the approaching vector vij. Oij is thus the transformation matrix that is defined
as follows:

Oij = [o1
ij, [0,−v(3)

ij ,v
(2)
ij ]T ,vij], o1

ij = [0,−v(3)
ij ,v

(2)
ij ]T × vij, (4.3)

where v(k)
ij is the kth element of vij. This transformation produces a unified

representation and coordinate system for all candidates.

In-plane rotation prediction is handled as a classification task. Given an aligned
point cloud as an input, the predictions are the classification scores and normalized
residuals for each binned rotation, predicted grasp width and grasp confidence. Due
to the symmetrical structure of the gripper, predicted rotations lie in the [0, 180]
degrees range. Following is the objective function of the OperationNet:
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LR(Rij , Sij ,Wij) =
K∑
d=1

( 1
Ncls

∑
ij

Ldcls(Rij , R∗ij)

+ λ2
1

Nreg

∑
ij

Ldreg(Sij , S∗ij)

+ λ3
1

Nreg

∑
ij

Ldreg(Wij ,W
∗
ij)),

(4.4)

where Rij is the binned rotation in degrees, Sij is the grasp confidences, Wij is
the gripper width, and d is the approaching distance. Ld is dth binned distance
loss, while Lcls is the sigmoid cross entropy loss function, and Lreg is the smooth
L1 loss.
ToleranceNet employs grasp affinity fields representation to learn and predict

the tolerance to perturbations of each grasp.
For each ground truth grasp pose, its neighbors in the sphere space are searched

to estimate the farthest distance that still allows a grasp to be robust with a score
> 0.5. Following is the objective function of the ToleranceNet:

LF (Aij) = 1
Nreg

K∑
d=1

∑
ij

Ldreg(Tij , T ∗ij) (4.5)

where Tij is the maximum perturbation of the grasp pose.

4.1.1.3 Training and inference

During training all modules are trained in an end-to-end fashion with the following
objective function minimized:

L = LA({ci}, {sij}) + αLR(Rij , Sij ,Wij) + βLF (Tij) (4.6)

During inference, grasp poses are separated into 10 bins in accordance to their
grasp scores. Grasps in each bin are sorted in accordance to the maximum predicted
perturbation. Additionally, all predictions can be optionally filtered for collision.
This is achieved by means of the Model-Free Collision Detection: each measured
scene point cloud is downsampled and voxelized with the voxel size of 0.01m, the
corresponding predicted grasp poses are checked for collision with the scene, and if
global intersection over union (IoU) of the gripper model and the voxelized scene

31



4 Method

exceeds 1cm3, then the corresponding prediction is labeled as colliding with the
visible scene point cloud.

4.1.1.4 Implementation

GraspNet was implemented using Python 3.6 and PyTorch 1.2. Rotation angles and
approaching distances were divided into 12 and 4 bins respectively. Approaching
distances bins are 0.01, 0.02, 0.03, and 0.04 meters. The amount of sampled points
M was set to 1024, the amount of viewpoints V was set to 300. PointNet2’s set
abstraction layers employ radii of 0.04, 0.1, 0.2, and 0.3 meters and grouping sizes
of 64, 32, 16, and 16 where the point set is downsampled to 2048, 1024, 512, and
256 points. Feature propagation layers upsample to 1024 and 256 channel features.
ApproachNet, OperationNet, and ToleranceNet are MLPs with the following sizes:

• ApproachNet: 256, 302, 302

• OperationNet: 128, 128, 36

• ToleranceNet: 128, 64, 12

The loss function 4.6 has the following default parameters:

• λ1 = 0.5

• λ2 = 1.0

• λ3 = 0.2

• α = 0.5

• β = 0.1

The optimizer of choice is Adam, and the number of points N sampled to
represent the scene is 20000. The initial learning rate is 0.001 and it is decreased
one order of magnitude after 60 and 100 epochs. The batch size is 4.
The introduction of an explicit notion of a colliding proposal grasp pose into

a training pipeline may improve the qualitative results of these proposals. First,
Contact-GraspNet [MS21] is described as a model that will help highlight the effect
of not having the aforementioned notion of collision, as well as serve as a basis for
proposed Collision-GraspNet architecture, which is presented in the second half of
this section.
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4.1 Grasp estimation

4.1.2 Contact-GraspNet

4.1.2.1 Grasp representation

Contact-GraspNet grasp representation is shown in Figure 4.3.

Figure 4.3: Grasp representation in Contact-GraspNet. c is an contact point being
observed, a and b are the 3-DoF rotation, w is the predicted gripper
finger opening width, while d is the base to baseline distance. Magenta
colored points correspond to gripper points v that are taken into account
in ladd−s loss. Taken from [MS21].

In this representation, the fact that for most two-finger grasps at least one of the
two gripper contacts is visible prior to grasping is taken into an account. Thus, the
distribution of ground truth grasps g ∈ G is mapped to the corresponding contact
point c ∈ R3. Additionally, their location in 3D is represented by the neighboring
points in the point cloud.

Without the loss of generality, the problem of 6-DoF estimation is reduced to
3-DoF grasp rotation Rg ∈ R3×3 and grasp width w ∈ R for a two-finger parallel-jaw
gripper. The contact point c ∈ R3 of a gripper’s pad center is the base point for
defining the whole 6-DoF grasp pose g ∈ G representation (Rg, tg) ∈ SE(3) and
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grasp width w ∈ R:

tg = c + w

2 b + da

Rg = [b a × b a],
(4.7)

where tg and Rg are the translation and rotation components of pose g, respectively.

4.1.2.2 Architecture

Contact-GraspNet employs PointNet2 [Qi+17a] feature abstraction and feature
propagation layers to build an asymmetric U-shaped network which allows for
efficient processing of point clouds and hierarchical aggregation of their feature
representations. An overview of the whole training pipeline is presented in Figure
4.4.

Figure 4.4: Overview of Contact-GraspNet pipeline. Offline scene composition using
ACRONYM dataset or its derivatives is followed by online valid grasp
mapping to their contact points on the mesh surface. Virtual camera
views are sampled in the scene to render point depth maps. Recorded
points (yellow) are annotated as positive if there is a contact on the
mesh (blue) in a 5 mm radius, and are associated with the corresponding
transformation of the said mesh contact. Resulting point annotations
are used for supervision. Taken from [MS21].

Input data is represented by a set of N random points p ∈ RN×3 sampled from
the recorded input point cloud. The resulting prediction is made on M farthest
points. Each of the four output heads has two 1D convolutional layers and provides
the following per-point outputs that are used to form a grasp representation.
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4.1 Grasp estimation

o ∈ R10 is used to obtain grasp width ŵi ∈ [0, wmax] that is split into 10 bins
ô ∈ R10, and the center value with the highest confidence represents ŵi.

z1 ∈ R3 and z2 ∈ R3 are used to obtain the approach direction a ∈ R3 and
the baseline direction b ∈ R3. Since they are orthonormal due to the grasp
representation definition, both direction predictions â, b̂ are coupled in an in-
network Gram Schmidt orthonormalization procedure to decrease the dimensionality
of grasp predictions by only predicting â as the orthonormal component of b̂:

b̂ = z1
||z1||

(4.8)

â = z2 − 〈b̂, z2〉b̂
||z2||

. (4.9)

ŝ ∈ R are the contact success predictions. During training for each rendered point
cloud P = p1, ...,pn ⊂ R3 a point-wise grasp success is assigned in the following
manner:

∀i = 1, ..., n si =

1 minj ||pi − cj||2 < r,

0 otherwise,
(4.10)

where cj ∈ P are the mesh contact points of non-colliding dataset ground truth
grasps gj ∈ G in camera coordinates, and r ∈ R is the maximum contact mapping
radius. Given P+ ⊂ P that have feasible grasp contacts within radius r, for each
point p+

i ∈ P+ the closes grasps are assigned in the following way:


wg,i

Rg,i

tg,i

 =


wg,j

Rg,j

p+
i + wj

2 bj + daj

 , (4.11)

with
j = argmink||p+

i − ck||2. (4.12)

ŝ ∈ R are evaluated at all output points pi ∈ R3 : ∀i ∈ [0,m] using binary cross
entropy lbce,k. Top k predictions are propagated, other predictions concerning the
geometry of grasps are evaluated only at p+

i . During training all output heads are
combining their predictions to form a 6-DoF grasp pose ĝ ∈ G following 4.7. Five
points v ∈ R3×5 that are shown in Figure 4.3 are transformed into ground truth
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frames computed following 4.11. v is transformed into the predicted grasp poses at
p+
i :

vgti = vRTg,i + tg,i,

v̂gti = vR̂Tg,i + t̂g,i.
(4.13)

6-DoF grasp loss ladd−s is defined as a weighted sum of average distances between
the gripper ground truth points v and v̂.

ladd−s = 1
n+

n+∑
i

ŝiminu||v̂i − vgtu ||2, (4.14)

where n+ is a size of P+ and ŝi is the predicted contact success confidence. For
the predicted binned grasp widths the weighted multi-label binary cross entropy
lwidth is optimized.

4.1.2.3 Training and inference

During training the following target function is minimized:

L = αlbce,k + βladd−s + γlwidth (4.15)

For inference, the point cloud is centered at its mean in camera coordinates.
Additionally, during inference the local regions of interest can be extracted as
centroids of the input point cloud segments in order to increase the number of
potential valid contact points. For this purpose, cubes with an edge size set to
doubled largest spanning dimension, but no less than 0.3 m and no more than 0.6
m are extracted.
During inference, the predicted grasp poses are selected according to their

confidence values. First, the grasps with ŝ > ths,1 are selected, and then farthest
point sampling is used to ensure broad grasp coverage. If the number of the selected
grasps is less than 2048, the grasps with ŝ > ths,2 are also selected.

4.1.2.4 Implementation

Contact-GraspNet was implemented using Python 3.7 and TensorFlow 2.1. The
number of points of the point cloud N was set to 20000, and M was set to 2048.
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4.1 Grasp estimation

The three set abstraction layers have the following query ball radii: [0.02, 0.04, 0.08]
for the first, [0.04, 0.08.0.16] for the second, and [0.08, 0.16, 0.32] for the third,
respectively. Output sizes for the MLPs of feature propagation layers are (256, 256),
(256, 128), and (128, 128, 128), respectively.

The loss function 4.15 has the following default parameters:

• α = 1,

• β = 10,

• γ = 1,

Contact mapping radius r is set to 0.005m. The optimizer of choice is Adam
with an initial learning rate of 0.001, decay rate of 0.7 for each 200000 samples.
The confidence thresholds ths,1 and ths,2 are set to 0.23 and 0.19, respectively.
Batch size is 3 for 144.000 iterations.

4.1.2.5 ACRONYM-FORK01

The ACRONYM-FORK01 dataset provides training data for the Contact-GraspNet.
ACRONYM-FORK01 is a direct derivative of ACRONYM dataset [EMF20], see
Chapter 3.3 for more details on ACRONYM.
ACRONYM-FORK01 uses meshes provided in ACRONYM to generate 10000

scenes, where each scene is composed of 8− 12 randomly sampled object meshes
placed on a support object in stable poses. Each scene is represented by an .npz

file containing source mesh paths and the corresponding object poses. Additionally,
a varying number of ground truth non-colliding grasps is stored for each scene,
where each grasp is represented by the corresponding contact points ci ∈ R2×3 and
pose g ∈ R4×4. The generated contact points are computed on scene meshes using
the simplified Franka Panda gripper model with a 0.1 m finger opening. Visual
comparison of the original gripper model and the used simplified one can be seen
in Figure 4.5.

4.1.3 Evaluation

Fang et. al. [Fan+20] proposed a unified online 6-DoF evaluation pipeline. Each
predicted grasp pose Pi is associated the target object by checking the pointcloud
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Figure 4.5: Gripper models: original Franka Panda gripper (left panel), simplified
version with 0.1 m finger opening (right panel).

inside the gripper opening. Then the force-closure metric is employed to provide
a binary label for each predicted pose given different values of friction coefficient
µ in a similar way that was used during grasp annotation generation for the
GraspNet-1Billion dataset.

Since it is expected that for a cluttered scene setup there are multiple grasp
poses to be predicted, the percentage of true positive is more important. Thus
the Precision@k metric is adopted. This metric outputs the precision of top k

ranked grasps. For each friction coefficient µ value k = 50 top grasps are evaluated,
defining an average precision APµ value. In the scope of this work AP value for
each dataset test split is reported: average precision over all µ values in the range
[0.2, 1.2] with ∆µ = 0.2 as interval. Additionally, each prediction is tested for
collision with a fully visible scene. For this purpose target scenes is downsampled
and voxelized with a voxel edge size of 0.008m, and predictions are checked for
intersection with the occupied voxel space.

In order to not allow similar grasp poses or grasp poses for single object to
dominate the scene, grasp pose non-maximum suppression (NMS) is used before
evaluation.

For two grasps G1 and G2 a grasp pose distance D(G1,G2) is defined as
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following:
D(G1,G2) = (dt(G1,G2), dα(G1,G2)) (4.16)

where dt(G1,G2) is a translation distance and dα(G1,G2) is a rotation distance
between G1 and G2.

Assuming a grasp pose is defined by a translation vector t and rotation matrix
R, then aforementioned distances are defined as following:

dt(G1,G2) = ||t1 − t2|| (4.17)

dα(G1,G2) = arccos 1
2(tr(R1 ·RT

2 )− 1) (4.18)

Since rotation and translation are not lying in the same metric space, NMS
threshold TH is defined as a tuple just like pose distance D:

TH = (thd, thα) (4.19)

Then D(G1,G2) < TH if:

dt(G1,G2) < thd, dα(G1,G2) < thα (4.20)

Thus, two grasps G1 and G2 are merged into one if D(G1,G2) < TH. Only
top K grasps per each object in the scene contribute towards the overall score
according to confidence scores, while the rest is ignored. thd = 3cm, thα = 30◦,
and K = 10 are used. Result of applying pose-NMS using ground truth grasps
from GraspNet-1Billion dataset are shown in Figure 4.6.

4.2 Curvature measure

Given the constraint of learning from partially observable scenes, namely being
unable to learn from the occluded parts of the scene, certain geometrical properties
of 3D data can be exploited to give explicit indication about the geometry of the
occluded parts of shapes in the scene. Embedding input data with that information
may improve quantitative and qualitative results. The most obvious choice for
exploring this hypothesis is using curvature information of a given shape. For
curvature estimation on polyhedral approximation of smooth surfaces the modified
algorithm based on mean curvature measure is used [tC06].
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Figure 4.6: Result of applying pose-NMS on dense group of ground truth grasps
from GraspNet-1Billion dataset: original proposals (left), resulting
proposals (right).

First, let M define a surface in oriented euclidean space R3. M is also assumed
to be the the boundary of some compact set V ⊂ R3. Assuming M is smooth, the
unit normal vector at a point p ∈M pointing outward V is noted as n(p). Given a
vector v in the tangent plane TpM to M at p, the derivative of n(p) in the direction
v is orthogonal to n(p) as n(q) has unit length for any q ∈M . The derivative Dpn

of n at p is defining an endomorphism of TpM . Eigenvectors and eigenvalues of
TpM are respectively called principal directions and principal curvatures. From the
trace and determinant of Dpn principal curvatures also called mean and Gaussian
curvature at p can be recovered.

In smooth case, the mean curvature measure φHV is a following function that
associates with every set B ⊂ R3 the quantity:

φHV (B) =
∫
B∩M

H(p) dp (4.21)

where H(p) being the mean curvature of M at point p.

This definition can be adopted for triangulated surfaces, where V is a polyhedron
with vertex set P and edge set E. Discrete mean curvature measure φHV then is:
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φHV (B) =
∑
e∈E

length(e ∩B)β(e) (4.22)

where |β(e)| is the angle between the normals to the triangles of M incident on e.
The sign of β(e) is positive if e is convex and negative if it is concave.

In the base case for each vertex p, a query ball Br(p) with radius r and center at
p is defined. The intersection of a candidate edge e with Br(p) is then a line-sphere
intersection segment. The drawback of such methodology is that in case of meshes
that have a thin structural segment as its part (mesh of a painting, for example)
means that edges spanned by the vertex from ’opposite’ side of the mesh will be
taken into consideration. This undesirable effect can be mitigated by reducing
radius r. However, in practice reducing the radius is often not a viable option since
if Br(p) is too small, the curvature of neighborhood will not be captured properly.
Additionally, some meshes of comparatively poor quality, especially in such "thin
plane" cases, may project artifacts on the opposing plane, this effect is shown in
Figure 4.7.
To properly mitigate this effect, each candidate edge e ∈ E is checked to be

connecting the target vertex p to one of its neighbors, i.e. e = (u, p) ∈ E where u
is neighbor of p. This way, for each vertex point p defined by its coordinate in R3

of mesh V there is an associated mean curvature measure value.
Prior to embedding the resulting value for each point, the fact that this value

is not absolute and not normalized must be taken into account. In order to
represent the degree of concavity or convexity of neighborhood around p, positive
and negative values are normalized separately:

h(p)+ = h(p)+ − b+,lower
b+,upper − b+,lower

(4.23)

h(p)− = 1− h(p)− − b−,lower
b−,upper − b−,lower

(4.24)

where b+ and b− are normalization bounds for positive and negative values
correspondingly. For positive curvature values it is set to [0, b], while for negative
values to [−b, 0], where b is defined empirically. Prior to normalizing, the values
are clipped to their corresponding b values. This leads to normalization into [0, 1]
range, where the closer the value to 1, the higher degree of convexity/concavity
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Figure 4.7: Curvature embedding artifacts on the painting mesh (upper panel) on
the right side of the image caused by poor quality of the mesh, and its
wireframe (lower panel).

it represents. Each normalized set of values is treated as a value of one of RGB
channels of vertex colors assigned per each vertex of a mesh. Red channel is
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occupied by the normalized values that represent the degree of concavity, and green
channel - by values that represent convexity.

4.2.1 ACRONYM-FORK01-CRV

Using the annotations provided in ACRONYM-FORK01 dataset, ACRONYM-
FORK01-CRV representation is generated as follows. Each scene in ACRONYM-
FORK01-CRV is constructed using the provided annotations; the resulting mesh
set is concatenated into a single mesh; and each vertex is assigned an RGB color
value representing local curvature following the procedure defined in 4.2. The
embedded scene representations are exported in the .ply format. When computing
the modified mean curvature measure, query ball radius r was set to 0.01, and
normalization bounds were set to 0.1 and −0.1 for positive and negative values,
respectively. Figure 4.8 provides an example of the processed ACRONYM-FORK01
scene.

Figure 4.8: Curvature-embedded scene from ACRONYM-FORK01-CRV dataset.
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4.2.2 GraspNet-CRV

The second derivative dataset used in this work is GraspNet-CRV which builds
upon the annotations and data provided by the GraspNet-1Billion dataset [Fan+20]
(see Chapter 3.2 for more details on GraspNet-1Billion).

GraspNet-1Billion provides 190 scenes each containing 256 RGB-D image pairs.
For each pair, the object poses as well as the camera pose are annotated. Thus,
the aim is to generate a third image for each pair: an RGB image of the curvature-
embedded scene. In order to do so, the scenes must be reconstructed using the
provided annotations. GraspNet-1Billion provides 88 source mesh objects that
are used for composing the scenes. These meshes have on average around 500000
vertices each, which means that, on one hand, they are a perfect target for accurate
curvature computation, and, on the other, such computation in a scene of 10
objects in general will take a considerable amount of computational effort. For
this reason, all meshes are processed prior to the scene construction to reduce the
vertex count while preserving the original topology. For this purpose, the quadratic
error metric mesh simplification algorithm [GH97] is employed.

The quadratic error metric mesh simplification algorithm is based on the iterative
contraction of vertex pairs. To be more specific, starting with the initial model
M , a sequence of pair contractions is applied until the simplification goals are
satisfied and the final approximation M∗ is produced. The simplification goal in
this case is the desired amount of vertices mp. In order to perform vertex pair
contraction and choose new vertex location, the cost of contraction is defined. For
vertex p = [x, y, z, 1]T and plane q = [a, b, c, d]T , the squared distance dist(q, p)2

between q and p is:

dist(q, p)2 = (qT p)2 = pT (qqT )p = pTQpp (4.25)

where Qp is the following 4× 4 matrix:

Qp = qqT =


a2 ab ac ad

ab b2 bc bd

ac bc c2 cd

ad bd cd d2

 (4.26)

This way, pTQpp is a quadratic form representing the approximation error at
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vertex p. Since each vertex has a set of planes (triangles) associated with it, the
approximation error of each vertex is defined as the sum of squared distances to
all planes:

∆(p) =
∑
i

pTQqip = pT (
∑
i

Qqi)p (4.27)

For a given contraction (p1, p2)→ p̂ a ∆(p̂) = ∆(p1) + ∆(p2) matrix is computed
which approximates the error at p̂. In order to actually perform the contraction,
a new vertex position p̂ must be computed that minimizes ∆p̂. Since the error
function is quadratic, finding its minimum is a linear problem. Thus, p̂ is found by
solving δ∆(p̂)/δx = δ∆(p1)/δy = δ∆(p2)/δz = 0, which is equivalent to solving:


q11 q12 q13 q14

q21 q22 q23 q24

q31 q32 q33 q34

0 0 0 1

 p̂ =


0
0
0
1

 (4.28)

If this matrix is not invertible, the optimal vertex along the line segment (p1, p2)
is attempted to be found. If it is impossible, the final location is chosen from the
endpoints and the midpoint of this line segment.

Such a contraction procedure allows to reduce the time required to process each
scene significantly. A visual comparison of an original high-polygon model from
the GraspNet-1Billion dataset and its decimated version can be seen in Figure 4.9.
It can be observed that a significant reduction in the vertex count does not lead
to a considerable degradation of object geometry.
For each annotated camera pose a scene was constructed, meshes in the scene

were concatenated, and the modified mean curvature measure is computed with the
query ball radius r set to 0.01. The normalization bounds were set to 0.1 and −0.1
for positive and negative values, respectively. All source meshes were decimated to
approximately 1000 vertices each. An example rendering is shown in Figure 4.10.

4.3 Collision-GraspNet

In the case of grasp pose estimation in partially observable scenes the explicit
notion of collision with the occluded geometry of the scene may improve the quality
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Figure 4.9: Object mesh models: (left) original model from GraspNet-1Billion with
748049 vertices, (right) decimated version with 992 vertices.

Figure 4.10: Example of a curvature measure embedded GraspNet-1Billion scene.
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of predictions. Collision-GraspNet aims to introduce this notion by assuming a
role of the supervisor or refinement network that can evaluate grasp pose proposals
on the grounds of collision in order to filter them out or to attempt to refine them.

4.3.1 Architecture

Figure 4.11 provides an overview of the Collision-GraspNet training pipeline.

Figure 4.11: A camera pose in SE(3) is sampled (yellow), then a depth map of the
target scene is rendered given a randomly sampled scene (orange) from
the ACRONYM-FORK01-COL dataset with consecutive computation
of the scene point cloud of Nscene points. Camera pose and scene
point cloud are used to map all ground truth contact points of the
target scene to the scene point cloud, which allows to draw a ground
truth gripper pose sample and use it to obtain a full sample point
cloud of Nscene +Ngripper points which is passed to the network (blue
and gray) and corresponding sample class label and outputted class
probability (green) are used for loss computation (red).

Collision-GraspNet employs Pointnet2 [Qi+17a] blocks to build a network. The
base version of Collision-GraspNet uses three set abstraction (SA) layers in total.
Such layer takes a point cloud of size (B,Nscene + Ngripper, d + C), where B is
the batch size, Nscene is the number of points representing a partially observed
scene, Ngripper is the amount of points representing the gripper fork, and C is
the amount of channels representing auxiliary features. In its turn, an output
of such layer is of size (B,N ′

, d + C
′), where N ′ is the number of subsampled

points with d-dim coordinates and new C
′-dim feature vectors summarizing local
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context. Each abstraction layer includes three following structural parts. The
first is the sampling layer where a subset of the input points is chosen using
an iterative farthest point sampling method. The second is the grouping layer
where a point set of size (N, d+ C) is transformed into a number of point sets of
size (N ′

,K, d+ C) where each group correspond to a local region, and K is the
number of points in the neighborhood of centroid points. Since the neighborhood
of a point is defined by metric distance, ball query finds all points that are within
a radius to the query point, thus defining a neighborhood. The last element is the
PointNet layer, where an input set of size (N ′

,K, d+C) is transformed into size
(N ′

, d+C
′), where each local region in the output is abstracted by its centroid and

local feature that encodes the centroid’s neighborhood. Layers employ Multi-Scale
Grouping (MSG) technique to capture multi-scale patterns of an input point set
by applying grouping layers with different scales followed by according PointNets
to extract features of each scale. SA layers are followed by three fully-connected
layers with dropout layers that output a single predicted class probability ŷ.

In order to compute ŷ a rendered scene point cloud P = p1, ...,pn ⊂ R3 is used
to obtain ground truth-wise binary labels vgti indicating the visibility of said ground
truth grasp pose:

∀i = 1, ..., n vgti =

1 mini||pi − cj||2 < r,

0 otherwise,
(4.29)

where cj ∈ P are the mesh contact points of dataset ground truth grasps gj ∈ G in
camera coordinates, and r ∈ R is the maximum contact mapping radius. The set
G+ of successfully mapped grasps g+ and their corresponding class labels y+ can
be extracted from the ground truth contact point set G. They are used to produce
a full scene sample by using a random random visible grasp pose g+

k ∈ G+ of the
required class yk ∈ y, which are passed to the first SA layer of Collision-GraspNet.
An example of complete point cloud sample is shown in Figure 4.12.

4.3.2 Training and inference

During training, binary cross entropy target loss is minimized:
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Figure 4.12: Full point cloud sample containing 20000 points of the partially visible
scene (black) and 2000 points of the fork gripper in a non-colliding
ground truth grasp pose (green).

L = − 1
B

∑
k=1

yk log(ŷk) + (1− yk) log(1− ŷk) (4.30)

where B is the predicted probabilities output size (batch size), ŷk is the k-th
predicted class label, and yk is the ground truth class label.

During training, the contact points mapping attempts to balance the amount of
valid and colliding ground truth grasp pose examples for each scene by means of
sampling (with replacement if needed) to reach the required amount of examples
G+
max. Additionally, during both training and inference, each batch is attempted to

be populated with the examples of both classes in equal frequency. If for some class
it is impossible to create a novel sample, an already sampled example is repeated.
If a sample is classified as colliding during inference, an attempt to refine it

can be made. In order to do so, the rotation and the translation component of
the proposal are sampled to define the new proposal (Rpert, tpert). The rotation
component Rpert is a dot product between an original rotation matrix R and a
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perturbation matrix that rotates the space about a random vector through at
a random rotation angle sampled uniformly in [0, Rmax] range. The translation
component tpert is a normal translation vector in a random direction scaled by
the uniformly sampled value in [0, tmax] in meters. For each new perturbed pose
(Rpert, tpert), the gripper point cloud is being transformed into the same coordinate
frame as the scene point cloud, and this new sample is evaluated by the network.
If the sample is classified as a non-colliding grasp and there are scene points in the
gripper finger opening (which indicates that the gripper would actually grasp an
object for this pose), the perturbation is assumed to be successful and the sampled
pose is accepted. Collision-GraspNet attempts refinement for a fixed amount of
tries ntries.

4.3.3 Implementation

Collision-GraspNet was implemented using Python 3.7 and TensorFlow 2.1. Virtual
camera poses were sampled in a quarter sphere above the center of the scene
support structure. For each scene, G+

max = 1000 ground truth samples were used
for contact points mapping with the label ratio of 1 : 1. The contact mapping
radius was set to 0.005 m. The number of points of the scene point cloud Nscene

was set to 20000, and Ngripper to 2000. The gripper’s full point cloud was sampled
using even farthest point sampling. The first SA layer downsamples the scene to
512 points, while the second to 128 points. Set abstraction layers have the following
query ball radii: [0.1, 0.2, 0.4] and [0.2, 0.4, 0.8] in meters. In each local region, the
layers sample 16, 32, 128 and 32, 64, 128 points for the first and the second layer,
respectively. Fully-connected layers have output sizes of 512, 256 and 1 for the
first, the second, and the third, respectively. The perturbation parameters Rmax
and tmax were set to 0.261 radians and 0.02 meters, respectively. Dropout layer’s
activation probability is 0.4. The maximum amount of refinement tries ntries was
set to 100. The optimizer of choice is Adam. The starting learning rate is 0.001
with a fixed decay rate of 0.7 for each 20000 samples using an exponential decay
scheduler. The batch size is 12.
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4.3.4 ACRONYM-FORK01-COL

Collision-GraspNet requires a custom dataset for training. Such dataset must
contain a representative selection of colliding and valid grasp poses for scenes of
structured clutter.
Therefore, another derivative of ACRONYM dataset was generated, namely

ACRONYM-FORK01-COL. This dataset contains 10000 scenes, where each scene
contains 8 to 12 object in stable poses. Each object has a variable amount of the
ground truth grasps assigned. Each ground truth grasp has one of the two possible
labels: colliding grasp (1), or valid grasp (0). Each scene has a fixed ground truth
label ratio of 1 : 1. All valid grasps are the grasps that were valid for an individual
object in an isolated setting and that remained collision-free in the cluttered scene.
Half of the colliding grasps are the grasps that were valid for an individual object
in isolated setting but are now in collision in the cluttered scene. The second half
are the grasps that were sampled from the valid grasps pool and were subsequently
perturbed in order to simulate grasps that are close to being valid, yet are in
collision with the scene. In order to achieve this, each individual sampled valid
grasp has its pose perturbed by individual sampling of the new rotation component
Rpert and of the translation component tpert, where the maximum perturbation
angle Rmax was set to 0.261 radians, and maximum translation distance tmax was
set to 0.02 meters. Perturbation was attempted for a fixed amount of tries ntries
of 20. All the grasps have corresponding poses and contact points stored, as well
as assigned class labels.
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In the following, the experiments carried out during the work presented herein are
described. The experiments were carried out in three series to test the hypotheses
proposed in chapter 4. First, the baseline performance scores are established
using the methods, datasets and evaluation pipeline described in 4.1. Second, the
curvature-based datasets from 4.2 are used to determine whether the curvature
information represented in the aforementioned datasets can boost the performance of
the Contact-GraspNet model. Finally, the Collision-GraspNet architecture proposed
in 4.3 is tested and evaluated. Each set of experiments includes a discussion of
results.

5.1 Establishing a baseline

The first series of experiments was aiming at establishing the baseline performance
scores of both GraspNet and Contact-GraspNet architectures under the requirements
and limitations imposed by the evaluation pipeline described in 4.1. In total, the
first series includes seven experiments. These experiments define a performance
benchmark for Contact-GraspNet making it possible to evaluate the impact of the
methods proposed herein.

5.1.1 GraspNet

5.1.1.1 Experiments

The codebase of the GraspNet model [Fan+20] was not released initially (as well
as the code for the evaluation pipeline proposed in the same publication), thus the
first experiment was aimed at reproducing the scores presented by Fang et al. The
default parameters were used for training and inference (see 4.1.1.4).
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Approximately 6 months after the release of the GraspNet-1Billion paper, the
codebase was released. The released code does not use the parameters presented in
the paper and additionally includes a postprocessing inference step that employs
the Model-Free Collision Manager module (MFCM) to filter out the colliding grasps.
Two experiments were carried out using the official codebase: the first one establishes
the baseline performance of the released model without this postprocessing step,
and the second one includes it in order to establish its effectiveness. In both
experiments, during training a scene was represented by 20000 points, the number
of viewpoints was set to 400, training was conducted for 18 epochs with a batch
size of 2. The initial learning rate of 0.001 was a subject to a fixed learning rate
decay of 0.1 at 8th, 12th, and 16th epochs.
During the postprocessing step, the collision threshold was set to 0.01m3, and

voxel size to 0.01m. For training GraspNet-1Billion dataset’s first 100 scenes
were used, while all predictions were made on the last 90 scenes (see 3.2 for more
information on GraspNet-1Billion data splits). Evaluation was carried out according
to the pipeline described in 4.1.3.

5.1.1.2 Results

Table 5.1 provides the obtained performance scores for the author’s implementation
of the GraspNet [Fan+20], and for the two takes on the official GraspNet model
implementation (without and with the optional filtering step). The scores are
reported for individual test data splits.

Model Seen Similar Novel

GraspNet [Fan+20] (ours) 13.411 10.723 3.250
GraspNet [Fan+20] 24.597 20.214 4.793

GraspNet + MFCM [Fan+20] 41.956 37.293 12.148

Table 5.1: GraspNet [Fan+20] implementations baseline performance according to
the chosen evaluation pipeline. Scores are reported for each individual
test data split in GraspNet-1Billion dataset.

Our custom implementation of GraspNet failed to reproduce the scores presented
in the original publication. In contrast, the official released code was not only able
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to reproduce them, but the optional filtering step shows it effectiveness by almost
doubling the scores.

5.1.1.3 Discussion

The reason for such results, more specifically, for the success of the postprocessing
step may be the following: in this step, the scene point cloud is voxelized with a
0.01m voxel size, and during the collision detection step, the collisions are detected
on the full voxelized scene with a 0.008m voxel size. This way, the absolute majority
of the grasps that would have been labeled as colliding during the evaluation of
the predictions are already rejected during the inference. This is because the voxel
size during inference is bigger than during evaluation. This analytical approach
ensures that the grasps that have high confidence but are colliding are not taken
into account during evaluation due to their earlier rejection, thus they do not
affect the overall performance score. Significant performance boost given by MFCM
indicates that GraspNet itself fails to reliably output collision-free predictions. This
highlights the strategy adopted by the GraspNet: outputting as many predictions
as possible, and analytically filtering out the most obvious cases of collision on a
coarse approximation of the visible scene.

5.1.2 Contact-GraspNet

5.1.2.1 Experiments

The next step was to establish the performance of Contact-GraspNet under the
limitations imposed by the chosen evaluation pipeline. For all experiments in
this section, ACRONYM-FORK01 dataset was used for training, and the same
aforementioned 90 test scenes from GraspNet-1Billion were used during inference.
In order to bridge the gap between the data from both datasets, camera poses
used for rendering depth maps were sampled from a quarter sphere above and
at a distance range of [0.7, 1.3]m from the center point of the support structure.
During inference, local regions of the input point cloud were extracted. During
evaluation, the predictions were transformed from the Contact-GraspNet grasp
representation frame into the GraspNet grasp representation frame. Training was
carried out twice. The default parameters of Contact-GraspNet were used during
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the first run, while the second run included preprocessing of the depth maps and
the point clouds. First, random noise with the scale factor of 0.001 and clip value
of 0.005 was added to the depth maps, which were subsequently smoothed with
a Gaussian kernel of size 3× 3. For each trained model, inference is carried out
twice: with the default confidence threshold value and with the lowered values of
0.18 and 0.15 for the first and the second threshold respectively.

5.1.2.2 Results

Table 5.2 provides the obtained performance scores of the trained Contact-GraspNet
models. The scores are reported for individual test data splits.

Model Seen∗ Similar∗ Novel∗

Contact-GraspNet 9.642 12.238 3.700
Contact-GraspNet +

ths,1 = 0.18, ths,2 = 0.15
9.859 12.496 3.997

Contact-GraspNet +
depth augmentation

10.184 11.840 4.052

Contact-GraspNet +
depth augmentation+
ths,1 = 0.18, ths,2 = 0.15

14.260 15.417 5.270

GraspNet [Fan+20] 24.597 20.214 4.793
GraspNet + MFCM 41.956 37.293 12.148

Table 5.2: Contact-GraspNet [MS21] performance according to the chosen evaluation
pipeline. Scores are reported for each individual test data split in
GraspNet-1Billion dataset (∗ GraspNet-1Billion was not involved in
training, thus for Contact-GraspNet test data splits are composed of
novel objects for all three splits). GraspNet + MFCM performance is
included for comparison.

It can be observed that Contact-GraspNet compares unfavorably to the GraspNet
in terms of the scores, but the data preprocessing and lower thresholds lead to a
1.5− 4.5% score improvement when compared to the default version.

Sample visualization of the grasps predicted by Contact-GraspNet for the GraspNet-
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1Billion dataset scene 153 is shown in Figure 5.1, where the color of the gripper forks
represents the confidence score assigned by the network: red for high confidence
and blue for low confidence values.

Figure 5.1: Contact-GraspNet predictions for the GraspNet-1Billion dataset scene
153. Colors of the the gripper forks represents the confidence score
assigned by the network: red is for high confidence, blue - for low
confidence values.

5.1.2.3 Discussion

There may be multiple reasons for the weaker performance of the Contact-GraspNet
as compared to the GraspNet. Firstly, there is an unaddressed domain gap between
ACRONYM dataset synthetic data and GraspNet-1Billion dataset real world depth
scene measurements. Additionally, all the scenes used for inference are composed
of objects that are novel for the trained Contact-GraspNet (though the results on
the novel test split are considerably lower, which indicates that it is composed of
objects of more complex shapes). Then there is a problem of applying grasp NMS
during evaluation, which effectively eliminates the dense predictions produced by the
Contact-GraspNet. And, finally, the evaluation pipeline performs collision detection
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on the predictions using the voxelized full scene point cloud computed from the
mesh scene representation. This means that some of the colliding predictions can
end up in the top-k subset of predictions that defines the overall score for the target
scene, thus negatively affecting the performance. Figure 5.2 shows a post-NMS
predictions that can be seen in Figure 5.1 that are colored according to their status
during evaluation: black color is assigned to the grasps colliding with the voxelized
scene representation, gray - to the grasps that are not grasping an object, red and
blue - to the valid grasps with high and low network confidence values respectively.

Figure 5.2: Contact-GraspNet predictions for the GraspNet-1Billion dataset scene
153 after applying grasp-NMS. Colors of the the gripper forks denote
their status during evaluation: black color is assigned to the grasps
colliding with the voxelized scene representation, gray - to the grasps
that are not grasping an object, red and blue - to the valid grasps with
high and low network confidence values respectively.

In Table 5.2 one can see that preprocessing and lowering the confidence thresholds
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improves the overall scores. The preprocessing step reduces the gap between training
and test data, while the reduced confidence thresholds ensure that the network
outputs more predictions to consider during the evaluation, reducing the impact
of grasp-NMS. However, the reduced thresholds have an undesired implication:
the network may be outputting predictions of lesser quality, which means that
predictions below a certain threshold may be, for example, colliding with the scene
point cloud. For the predictions of the Contact-GraspNet with preprocessing and
reduced confidence thresholds, 664145 out of 1800424 predictions are in collision
with the mesh representation of the scene.

5.2 Curvature measure

The first series of experiments established the performance scores and pinpointed
the issues that Contact-GraspNet faces under the limitations imposed by the
datasets and the evaluation pipeline used. The second series of experiments aims
at evaluating the effectiveness of the proposed curvature measure method and the
respective generated datasets.

5.2.1 Experiments

In order to enable the Contact-GraspNet to learn from the curvature-embedded
data that is computed offline, the data pipeline was modified. During training, the
sampled camera poses used for rendering the depth maps of the target scenes from
ACRONYM-FORK01 dataset were also used to render an RGB image of the same
curvature-embedded scene from ACRONYM-FORK01-CRV dataset. This RGB
image is passed along with the depth map, regularized to fit the target size of 20000
points per scene. During inference, the pre-rendered RGB images of GraspNet-
CRV dataset are used as a complimentary part of the depth maps provided by
the GraspNet-1Billion dataset. The resulting feature vectors are passed to the
network’s feature abstraction layers in a separate channel during both training and
inference.
Similarly to the fist series of experiments, the model was trained twice: as a

default Contact-GraspNet, and with the optional input data preprocessing step.
During inference, the second model used lowered confidence thresholds. The
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resulting models are denoted as Contact-GraspNet-CRV.

5.2.2 Results

Table 5.3 provides the obtained performance scores for both Contact-GraspNet-CRV
models trained on the curvature-embedded datasets.

Model Seen Similar Novel

Contact-GraspNet-CRV 8.282 11.127 3.776
Contact-GraspNet-CRV +

preprocessing +
ths,1 = 0.18, ths,2 = 0.15

8.602 11.272 3.912

Contact-GraspNet +
preprocessing +

ths,1 = 0.18, ths,2 = 0.15
14.260 15.417 5.270

Table 5.3: Contact-GraspNet-CRV performance according to the chosen evaluation
pipeline. Scores are reported for each individual test data split in
GraspNet-1Billion dataset. Baseline Contact-GraspNet performance is
included for comparison.

Notably, Contact-GraspNet models that used curvature-embedded data failed to
produce higher scores than their stock pointcloud-only counterparts. Interestingly,
the scores reported in this experiment are lower across all test data splits except
for the one that contains the novel objects.

5.2.3 Discussion

It appears that the networks failed to learn useful patterns from the curvature
features supplied with the point clouds during training. The reason for such
behavior may lie in the quality of the used datasets, namely ACRONYM-FORK01-
CRV and GraspNet-CRV. ACRONYM-FORK01-CRV has serious issues with the
source objects mesh quality, which results in a poor embedding. One example is
presented in Figure 5.3, where a curvature-embedded mesh with a clearly wrong
mesh wiring is shown. Such an embedding does not have any value learning-wise,
and at best can serve as an added noise.
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Figure 5.3: Curvature-embedded mesh with poor vertex wiring from ACRONYM-
FORK01-CRV dataset.

GraspNet-CRV sometimes fails to capture the concavity/convexity properties of
objects and produces noise output. An example scene is shown in Figure 5.4.

Figure 5.4: Botched curvature embedding scene from GraspNet-CRV dataset.

A common issue for both datasets is the fact that finding the right curvature
values normalization bounds that will work across the whole 10000 scenes of
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ACRONYM-FORK01 and 23040 annotations of the GraspNet-1Billion test data is a
non-trivial problem. It is physically impossible to inspect each image and embedding.
Additionally, there is a problem of establishing the best decimation factor/target
vertex count for the source meshes used in GraspNet-CRV dataset. As it was
mentioned above, the higher the vertex count, the better is the embedding result,
but the slower is the computation. The proposed curvature measure computation
method scales poorly with the increasing vertex count in terms of the computation
time: the generation of ACRONYM-FORK01-CRV took around 160 hours (almost
a week), while the generation of GraspNet-CRV took around 220 hours (9 days).
Overall, according to the obtained scores, both datasets do not have any considerable
value for learning-based methods, and more precise tuning of the used parameters
is required.

5.3 Collision-GraspNet

The third and final series of experiments is aimed at assessing the effectiveness
of the proposed Collision-GraspNet architecture using a multistage evaluation
process. During the first assessment stage, experiments that determine the optimal
parameter and architecture composition were carried out in three sets using the
classification accuracy on the ACRONYM-FORK01-COL datasets test data split as
an effectiveness metric. During the second stage, the best performing model from
each set was then evaluated against the analytical model-free collision classification
approach employed by GraspNet. In this step, the predictions produced by the best
performing Contact-GraspNet model from the fist series of experiments (see Table
5.2) were used. Finally, in the third stage, the best-performing model is assessed in
terms of its capability to improve the said predictions according to the employed
pose perturbation methods.

5.3.1 Evaluation on the ACRONYM dataset

The first stage of the assessment consists of a total of ten experiments: one
experiment to establish the baseline performance of Collision-GraspNet; and three
sets of three experiments each that aim to estimate the training parameters and
model composition required to produce the best possible classification accuracy.
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Notably, the three sets of three experiments were conducted in succession, where
the results of one set of experiments would determine which hyperparameter are to
be tuned in the next set. This was done by selecting the best performing model
from one set of experiments and using it as a default model for the next set of
experiments. Only CGN-larger model does not follow this rule this model is altered
on the architectural level rather than simply the level of hypeparameter tuning.

5.3.1.1 Experiments

All ten experiments are carried out with a batch size of 12 during training and
online evaluation. The total duration of training for all models is approximately
30 epochs. A single scene sample is represented as 20000 points for the scene
and 2000 points for the gripper, each sample has an auxiliary binary feature
channel that defines whether the point belongs to the gripper or to the scene.
For each batch during training and testing the ratio of samples with the ground
truth class of 1 (colliding grasp) and 0 (valid grasp) is approximately 1 : 1. The
models are evaluated and ranked on the basis of their classification accuracy of the
ACRONYM-FORK01-COL dataset last 1000 scenes (with the used batch size of 12
random views per scene this amounts to 12000 samples).

The first experiment used the default parameters described in 4.3. This model
is denoted as CGN-baseline. Tables 5.4 - 5.6 provide an overview of the models
that took part in the first evaluation stage: model name, parameters used during
training that differ from the default ones.

5.3.1.2 Results

Table 5.7 summarizes the performance of the models by comparing their classifica-
tion accuracies (ratio of correctly classified samples to the total number of samples),
as well as precision and recall metrics for both classes.

With the absolute classification accuracies ranging from 0.709 to 0.873 across all
three sets, a single best performing model from each set was chosen for the second
stage of assessment, namely CGN-pts↑-rad↓, CGN-pts↑-rad↓↓, and CGN-larger from
the first, the second and the third sets, respectively.
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Name Parameters

CGN-pts↑
1st SA number of points: 1024

2nd SA layer’s number of points: 256

CGN-rad↓
1st SA radii list: [0.05, 0.1, 0.2]

2nd SA layer’s radii list: [0.1, 0.2, 0.4]

CGN-pts↑-rad↓

1st SA number of points: 1024
1st SA radii list: [0.05, 0.1, 0.2]
2nd SA number of points: 256
2nd SA radii list: [0.1, 0.2, 0.4]

Table 5.4: Parameters used for the first set of experiments.

Name Parameters

CGN-lr↑

1st SA number of points: 1024
1st SA radii list: [0.05, 0.1, 0.2]

2nd SA layer’s number of points: 256
2nd SA radii list: [0.1, 0.2, 0.4]

base learning rate: 0.002

CGN-decay↑

1st SA number of points: 1024
1st SA radii list: [0.05, 0.1, 0.2]
2nd SA number of points: 256
2nd SA radii list: [0.1, 0.2, 0.4]
learning rate decay rate: 0.9

CGN-pts↑-rad↓↓

1st SA number of points: 1024
1st SA radii list: [0.025, 0.05, 0.1]
2nd SA number of points: 256
2nd SA radii list: [0.05, 0.1, 0.2]

Table 5.5: Parameters used for the second set of experiments.

5.3.1.3 Discussion

One may notice that the best performing model in each set of experiments is
outperforming the best model of the previous set. This means that the general
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Name Parameters

CGN-lr↑-decay↑

1st SA number of points: 1024
1st SA radii list: [0.025, 0.05, 0.1]
2nd SA number of points: 256
2nd SA radii list: [0.05, 0.1, 0.2]

base learning rate: 0.002
learning rate decay rate: 0.9

CGN-lr-cosine

1st SA number of points: 1024
1st SA radii list: [0.025, 0.05, 0.1]
2nd SA number of points: 256
2nd SA radii list: [0.05, 0.1, 0.2]

base learning rate: 0.002
cosine learning rate scheduling

min learning rate: 5%

CGN-larger

1st SA number of points: 1024
1st SA radii list: [0.01, 0.02, 0.4]

1st SA MLP lists: [16, 16, 32], [32, 32, 64], [32, 48, 64]
1st SA point sample list: [8, 16, 128]

2nd SA number of points: 512
2nd SA radii list: [0.02, 0.04, 0.08]

2nd SA MLP lists: [32, 32, 64], [64, 64, 128], [64, 96, 128]
2nd SA point sample list: [16, 32, 128]

3rd SA number of points: 128
3rd SA radii list: [0.04, 0.08, 0.16]

3rd SA MLP lists: [64, 64, 128], [128, 128, 256], [128, 128, 256]
3rd SA point sample list: [32, 64, 128]

base learning rate: 0.002

Table 5.6: Parameters used for the third set of experiments.

lane of hyperparameter tuning was chosen well.

The biggest performance boost was achieved by reducing the local region search
radii values of the set abstraction layers. The reason for such an improvement may
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Set Model Accuracy
Precision
(col./val.)

Recall
(col./val.)

− CGN-baseline 0.678 0.700/0.660 0.623/0.733
1 CGN-pts↑ 0.709 0.711/0.706 0.703/0.714
1 CGN-rad↓ 0.776 0.798/0.757 0.738/0.813
1 CGN-pts↑-rad↓ 0.811 0.794/0.830 0.839/0.783
2 CGN-lr↑ 0.798 0.796/0.799 0.800/0.800
2 CGN-decay↑ 0.823 0.809/0.840 0.846/0.800
2 CGN-pts↑-rad↓↓ 0.856 0.841/0.872 0.877/0.834
3 CGN-lr↑-decay↑ 0.869 0.860/0.879 0.882/0.857
3 CGN-lr-cosine 0.859 0.868/0.850 0.847/0.871
3 CGN-larger 0.873 0.851/0.900 0.906/0.841

Table 5.7: Comparison of all the models trained during the first evaluation stage.
Classification accuracy as well as precision and recall values (for both
classes) are reported.

be the following: in the hardest cases of collision, the collision itself happens at an
extremely small scale, thus it makes sense to reduce the radii to account for this.
CGN-larger, for example, has the lowest radius set to 0.01 m which is the finger
width of the gripper, and the biggest one to 0.16 which roughly approximates the
length of the gripper. The best performing model in each set used reduced radii
values when compared with the rest of the models in the same set.

Next comes the number of points sampled with FPS. The boost given by the
increasing the number of points can be explained in a similar fashion: since collisions
happen on an extremely small scale when compared to the rest of the scene, the
overall performance may benefit from higher sampling density. When combined
with finer radii value steps, the effect is amplified.

Tweaking the learning rate regimes, especially reducing the decay factor of the
learning rate (in case of an exponential decay scheduler) slightly improved the
performance. Cosine scheduler did not show any significant impact on performance.

CGN-larger is a special case, since it diverged from the strict hyperparameter
tuning and instead had its architecture altered by introducing an additional set
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abstraction layer. Local regions search radii became even finer, and the amount
of points sampled in each local region changed, too. The fact that CGN-larger
is the overall best performing model on the ACRONYM-FORK01-COL dataset
may indicate that Collision-GraspNet architecture still has substantial potential for
improvement via careful parameter tuning and even via making the model larger.

5.3.2 Evaluation on the GraspNet-1Billion dataset

The first evaluation stage produced three models that are best performing in
their respective experiment set brackets. Next step is to evaluate the models on
the predictions of the best performing Contact-GraspNet (see Table 5.2), which
essentially are the predictions made on the real measurements. The reason to
move forward with all three instead of a single best one is that since the second
stage involves a domain gap (from classifying the synthetic scenes of ACRONYM-
FORK01-COL to the real measurements of GraspNet-1Billion), thus the behavior
of multiple Contact-GraspNet models should be observed during this stage to
determine how different are the predictions used during this stage when compared
to the ground truth proposals present in the ACRONYM-FORK01-COL dataset.
The results produced by the models may give an insight of how different these
scenes (and corresponding predicted grasp poses) are in terms of the classification
difficulty.

5.3.2.1 Experiments

The first step is to compute the ground truth labels for the predicted grasp poses.
In order to obtain them, all predictions are analytically labeled as colliding or valid
in a mesh scene representation. The next step is to establish a baseline. GraspNet
model-free collision manager (MFCM) evaluates all predictions on a corresponding
point cloud representations of a partially observed scenes with default parameters as
described in chapter 4.1.1.3. Then, all predictions are classified by CGN-pts↑-rad↓,
CGN-pts↑-rad↓↓, and CGN-larger models. The ground truth class label distribution
of the predictions made by the best performing Contact-GraspNet model on the
test scenes of GraspNet-1Billion dataset is the following: for 1800424 predicted
poses in total, 1136279 are valid (non-colliding), and 664145 are colliding.
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5.3.2.2 Results

Table 5.8 reports GraspNet-MFCM classification results of the target predictions.

Actual
Predicted

Colliding Valid Support Precision Recall

Colliding 497935 166210 664145 0.527 0.750
Valid 447584 688695 1136279 0.806 0.606

Table 5.8: GraspNet-MFCM classification results of the target grasp pose predic-
tions.

Figure 5.5 provides a precision-recall curve for class 1 (colliding) of CGN-pts↑-
rad↓, CGN-pts↑-rad↓↓, and CGN-larger models. Precision-recall values of GraspNet-
MFCM are added for comparison.

Figure 5.6 provides a precision-recall curve for class 0 (non-colliding) of CGN-
pts↑-rad↓, CGN-pts↑-rad↓↓, and CGN-larger models. Precision-recall values of
GraspNet-MFCM are added for comparison.

5.3.2.3 Discussion

From the Figure 5.5 that only two Collision-GraspNet models are capable of
outperforming the GraspNet-MFCM module, namely CGN-pts↑-rad↓↓ and CGN-
larger. CGN-pts↑-rad↓ failed to outperform their analytical counterpart. The reason
for this may be the following: the combination of the used query ball radii and
point sampling density was not enough to capture the features that signify a
collision case.
For the fixed recall value of 0.750, CGN-larger is capable of classification with

precision of 0.583, and for the fixed precision value of 0.527 - of classification with
recall of 0.816. This indicates that Collision-GraspNet is capable of outperforming
the GraspNet-MFCM. For the case of the valid proposals as can be seen on Figure
5.6, CGN-larger shows better performance on a wide range of confidence thresholds
when compared with the GraspNet-MFCM. Colliding class is more important in
the task of collision classification, thus the optimal confidence threshold value is
to be picked based on the precision-recall curve segment of the CGN-larger that
outperforms the GraspNet-MFCM for the colliding class.
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Figure 5.5: Precision-recall curve for class 1 (colliding). For the fixed recall value
of 0.750 and the fixed precision value of 0.527, the CGN-larger model
is capable of classification with precision of 0.583 and recall of 0.816,
respectively.

Firstly, it is important to establish whether the higher recall or precision is
more important when classifying the proposals. It is obvious, that having both
precision and recall as high as possible (ideally both should be 1.0 for an ideal
classificator), but usually a trade-off has to be made. One may argue that higher
recall is more beneficial, since it intuitively means that the classifier is more efficient
at detecting collisions, thus more colliding proposals can be refined. For example,
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Figure 5.6: Precision-recall curve for class 0 (non-colliding).

the middle ground from the set of thresholds that lead to direct outperforming
of the GraspNet-MFCM by both precision and recall metrics is the threshold of
0.046 which leads to the precision and recall values of 0.555 and 0.782 respectively
against GraspNet-MFCM precision of 0.527 and recall of 0.750. This threshold leads
to the weighted accuracy and weighted F1-score of 0.708 and 0.694, respectively,
against 0.668 and 0.665 of GraspNet-MFCM. The corresponding threshold’s value
being so low can be explained by the fact that simulation-to-real domain gap
between training data from the ACRONYM-FORK01-COL and test data from the
GraspNet-1Billion datasets is present here, thus making classification more difficult.
Additionally, the proposals that were classified during this evaluation stage do
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not have that many self-evident collision cases (of direct collision with the visible
part of the scene) that are present in the training data and mostly represent the
hardest case of collision with the occluded part of the scene, further hindering the
classification performance.

On the other hand, higher precision would mean that the consequential proposal
refinement or rejection will be less "invasive" in the sense that it is less likely
to affect the already valid proposals, thus such classifier is less likely to reduce
the respective proposals scores according to some evaluation pipeline like the one
described in 4.1.3, for example. In case of the precision, Collision-GraspNet can
classify with considerably higher precision at the expense of recall, which would
satisfy aforementioned requirement of minimal "invasiveness". Confidence threshold
of 0.5, for example, produces the recall and precision values of 0.508 and 0.744,
respectively. This, in its turn, produces weighted average accuracy of 0.703 the
weighted F1-score of 0.741, against the weighted accuracy of 0.668 and the weighted
F1-score of 0.665 of GraspNet-MFCM.

Ultimately, choosing the appropriate optimal confidence threshold value depends
on the how much trust one is ready to put into the respective classification results,
and what exactly is to happen with the proposals classified as colliding. For
the next evaluation stage the confidence threshold of 0.5 was chosen, favoring
classification precision over classification recall.

5.3.3 Grasp proposals refinement

After establishing that Collision-GraspNet is capable of standing toe-to-toe with
its analytical counterpart in the task of collision classification, the final step of
assessment aims at determining whether Collision-GraspNet is capable of reliably
improving the grasp poses classified as colliding using the method described in
chapter 4.3.

5.3.3.1 Experiments

In order achieve the goal of the final evaluation stage, the overall best performing
model, namely CGN-larger yet again classifies the predictions used during the
previous step of assessment, but this time each grasp pose prediction classified
as colliding is attempted to be improved. Confidence threshold was set to 0.5.
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5 Experiments and results

Rotation and translation components of such grasps were sampled with the default
values of 0.261799 radians and 0.02 m for rotation and translation, respectively.
For each grasp pose, Collision-GraspNet attempted a perturbation for a maximum
amount of 100 tries. If the sample (concatenated scene and gripper point clouds) of
the new perturbed scene was classified by Collision-GraspNet as a valid case, the
next colliding grasp was in line for perturbation. If network failed to successfully
perturb the pose in the set amount of tries, this pose was omitted. The outputted
perturbed grasp poses were evaluated based on two criteria: whether the pose was
out of collision with the mesh representation of the full scene, and whether the
perturbed grasp was still grasping an object in the scene.
For this step, only a subset of target predictions is used, namely predictions

for scenes 100, 114, 129, 130, 144, 159, 160, 174, and 189, that in total amass 145934
predictions, of which 50461 are in collision with a full scene mesh.

5.3.3.2 Results

Table 5.9 reports the predicted grasp poses perturbation results using Collision-
GraspNet model: classification accuracy, amount of successfully perturbed grasps,
the amount of successfully perturbed grasps that are no longer in collision with
the scene mesh, the amount of successfully perturbed grasps that are still grasping
an object in the scene, and the amount of successfully perturbed grasps that are
fully valid (both non-colliding and grasping an object).

Figure 5.7 visualizes the original grasp poses and their perturbed versions, where
red gripper color signifies that this pose (either original or perturbed) brings the
gripper into a direct collision with the scene mesh, and green - that this pose is
non-colliding. All perturbed grasp poses are grasping an object in the scene.

Classification of a single proposal takes on average around 0.1 sec, and GraspNet-
MFCM takes around 0.08 sec per sample.

5.3.3.3 Discussion

Collision-GraspNet improved 51.5% of proposal poses it attempted to perturb in
order to bring them out of collision. The number of successfully perturbed grasps
that remained in a grasping pose in relation the object (96.7%) shows that the
chosen rotation and translation boundary values were selected well, though the
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5.3 Collision-GraspNet

Classification results
Precision 0.729
Recall 0.531
Support 50461

Refinement results
Attempted 36808
Successful
− Total 34896(93.8%)
− Non-colliding 19131(54.8%)
− Grasping 33727(96.7%)
Valid 17962(51.5%)

Table 5.9: Classification results for class 1 (colliding) and corresponding perturba-
tion results.

number of successfully perturbed grasps that remained in collision after 100 pertur-
bation attempts may indicate that the composition of the scenes requires further
boundary values tuning. Overall, taking into an account the reported classification
precision value of 0.729 and the amount of successfully rescued proposals, it can
be concluded that Collision-GraspNet is not only capable of reliable classification,
but also of grasp proposal improvement in terms of collision.
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5 Experiments and results

Figure 5.7: First 5 predicted grasp poses for scene 100 (a), 130 (b), and 160 (c)
that are classified by the Collision-GraspNet as colliding: (left) original
poses, (right) successfully perturbed poses in 100 tries. Color signifies
the ground truth labels of the original and perturbed grasp poses (red
color for colliding grasp, green - for non-colliding grasps).
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6 Future steps

Following are a number of details and ideas that could be investigated to obtain a
better in-depth understanding of the effectiveness of the proposed methods, as well
as improve their performance.
Firstly, the persisting domain gap between the ACRONYM and the GraspNet-

1Billion datasets and their respective derivative datasets could be addressed by
using the modified GraspNet-1Billion real scene measurements for both training
and testing of Contact-GraspNet. It would require processing all dataset grasp
pose ground truth annotations to adopt the respective grasp representation, which
would imply a significant computational effort.

While testing the modified mean curvature measure and generating the respective
datasets, hard computational bottlenecks were encountered. The aforementioned
processing of GraspNet-1Billion would not only eliminate the domain gap, but
also remove the pool of poorly wired meshes that lead to botched training data
embeddings. Additionally, having a single dataset would mean that estimating the
optimal hyperparameters for a curvature-embedded dataset generation would be
considerably easier.

Compared to Contact-GraspNet, Collision-GraspNet uses a similar data pipeline
during both training and inference as well as a similar contact mapping step. Thus,
the next logical step would be to train both Contact-GraspNet and Collision-
GraspNet in an end-to-end fashion jointly. This would require having a dataset
representing both valid and colliding ground truth grasp poses. Such dataset
is ACRONYM-FORK01-COL, yet in the case of computing the aforementioned
modified version of GraspNet-1Billion, colliding ground truth samples must be also
included.

While the general composition of the chosen evaluation pipeline proved reasonable,
certain parts of it are mostly hindering the overall suitability of this benchmark.
The non-optional grasp NMS does not allow for direct evaluation of refined proposals
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6 Future steps

produced by the Collision-GraspNet, and the collision detection on the voxelized
full scene is not particularly precise. Additionally, while a force-closure metric did
prove itself a stable and reliable analytical grasp quality metric, it is still a rough
approximation especially when taking into account the coarse friction coefficient
grid employed in the chosen evaluation pipeline. Moreover, the pipeline could
benefit from implementation optimization. Addressing these issues would require
building a custom evaluation pipeline. One way would be to propose a pipeline that
evaluates grasps in multiple stages on the levels of an individual grasp, an object,
and a scene separately, thus giving a detailed insight into how certain properties
of the predictions are affecting the overall scores on different levels. Also such a
pipeline could employ an execution step in a simulated environment, for example
using the FleX physics simulator, to complement the force-closure metric.
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7 Conclusion

In this thesis, two approaches aimed at addressing the limitations imposed by the
partial visibility and cluttered nature of a target scene during 6-DoF data-driven
grasp pose estimation were proposed.
The first explores the possibility of embedding input data with differential

geometrical shape information, namely the modified mean curvature measure, to
improve the qualitative results of grasp estimation. During the corresponding
experiments the benchmark baseline performance threshold was established by the
GraspNet and Contact-GraspNet models and the resulting accuracy values were
compared with Contact-GraspNet trained and tested on the curvature-embedded
dataset derivatives of the ACRONYM and GraspNet-1Billion datasets. According
to the results, Contact-GraspNet trained on these datasets failed to capture assumed
geometrical patterns, presumably due to the poor quality of the embeddings in the
train dataset.

The second method proposed a supervisor network architecture Collision-GraspNet
that classifies grasp proposals with respect to collision with the scene, which also
includes reasoning on the occluded parts of the scene by utilizing the ground
truth grasp contact points, respective grasp poses and the gripper point cloud
representation, and improves the invalid proposals via iterative pose sampling.
During the corresponding experiments a baseline version of the Collision-GraspNet
and nine variations of it were trained, where different lanes of hyperparameter
tuning were explored. The models were evaluated on the test data split of the
corresponding ACRONYM derivative dataset based on the classification accuracy,
precision and recall values. Three models then were compared to the analytical
grasp proposal filtering Model-free Collision Manager module employed by the
GraspNet architecture by classifying the real proposals produced by the Contact-
GraspNet during the testing of the first hypothesis. Two models outperformed the
MFCM for such metrics as precision and recall for both colliding and non-colliding
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7 Conclusion

classes. Additionally, one model is capable of classification with much higher preci-
sion, as well as with comparatively higher weighted F1-score and weighted average
accuracy values for the target class of colliding proposals. This indicates that
Collision-GraspNet is able to reason about the collisions of the proposed gripper
pose with the occluded part of the scene. The best performing variation of the
Collision-GraspNet was then evaluated on the subset of the same proposals, where
the model’s ability to refine the colliding poses was tested. The final experiment
showed that Collision-GraspNet can not only reliable classify proposals with high
precision, but also enhance around 50% of the proposals classified as colliding where
the refined version is no longer in collision and still grasps an object in the scene.
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