Lay, Florian Samuel and Bauer, Adrian Simon and Albu-Schäffer, Alin and Stulp, Freek and Leidner, Daniel (2021) Unsupervised symbol emergence for supervised autonomy using multi-modal latent Dirichlet allocations. Advanced Robotics. Taylor & Francis. doi: 10.1080/01691864.2021.2007169. ISSN 0169-1864.
PDF
- Only accessible within DLR
- Published version
11MB |
Official URL: https://www.tandfonline.com/doi/full/10.1080/01691864.2021.2007169
Abstract
In future Mars exploration scenarios, astronauts orbiting the planet will control robots on the surface with supervised autonomy to construct infrastructure necessary for human habitation. Symbol-based planning enables intuitive supervised teleoperation by presenting relevant action possibilities to the astronaut. While our initial analog experiments aboard the International Space Station (ISS) proved this scenario to be very effective, the complexity of the problem puts high demands on domain models. However, the symbols used in symbolic planning are error-prone as they are often hand-crafted and lack a mapping to actual sensor information. While this may lead to biased action definitions, the lack of feedback is even more critical. To overcome these issues, this paper explores the possibility of learning the mapping between multi-modal sensor information and high-level preconditions and effects of robot actions. To achieve this, we propose to utilize a Multi-modal Latent Dirichlet Allocation (MLDA) for unsupervised symbol emergence. The learned representation is used to identify domain-specific design flaws and assis in supervised autonomy robot operation by predicting action feasibility and assessing the execution outcome. The approach is evaluated in a realistic telerobotics experiment conducted with the humanoid robot Rollin' Justin.
Item URL in elib: | https://elib.dlr.de/146960/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||
Title: | Unsupervised symbol emergence for supervised autonomy using multi-modal latent Dirichlet allocations | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | 3 December 2021 | ||||||||||||||||||||||||
Journal or Publication Title: | Advanced Robotics | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | No | ||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||
DOI: | 10.1080/01691864.2021.2007169 | ||||||||||||||||||||||||
Publisher: | Taylor & Francis | ||||||||||||||||||||||||
ISSN: | 0169-1864 | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | MLDA, Symbol Emergence, Supervised Autonomy, Space Robotics | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||
HGF - Program Themes: | Robotics | ||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||
DLR - Program: | R RO - Robotics | ||||||||||||||||||||||||
DLR - Research theme (Project): | R - On-Orbit Servicing [RO], R - Intelligent Mobility (RM) [RO] | ||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institutes and Institutions: | Institute of Robotics and Mechatronics (since 2013) | ||||||||||||||||||||||||
Deposited By: | Lay, Florian Samuel | ||||||||||||||||||||||||
Deposited On: | 11 Jan 2022 15:40 | ||||||||||||||||||||||||
Last Modified: | 11 Sep 2023 13:24 |
Repository Staff Only: item control page