Lay, Florian Samuel und Bauer, Adrian Simon und Albu-Schäffer, Alin und Stulp, Freek und Leidner, Daniel (2021) Unsupervised symbol emergence for supervised autonomy using multi-modal latent Dirichlet allocations. Advanced Robotics. Taylor & Francis. doi: 10.1080/01691864.2021.2007169. ISSN 0169-1864.
PDF
- Nur DLR-intern zugänglich
- Verlagsversion (veröffentlichte Fassung)
11MB |
Offizielle URL: https://www.tandfonline.com/doi/full/10.1080/01691864.2021.2007169
Kurzfassung
In future Mars exploration scenarios, astronauts orbiting the planet will control robots on the surface with supervised autonomy to construct infrastructure necessary for human habitation. Symbol-based planning enables intuitive supervised teleoperation by presenting relevant action possibilities to the astronaut. While our initial analog experiments aboard the International Space Station (ISS) proved this scenario to be very effective, the complexity of the problem puts high demands on domain models. However, the symbols used in symbolic planning are error-prone as they are often hand-crafted and lack a mapping to actual sensor information. While this may lead to biased action definitions, the lack of feedback is even more critical. To overcome these issues, this paper explores the possibility of learning the mapping between multi-modal sensor information and high-level preconditions and effects of robot actions. To achieve this, we propose to utilize a Multi-modal Latent Dirichlet Allocation (MLDA) for unsupervised symbol emergence. The learned representation is used to identify domain-specific design flaws and assis in supervised autonomy robot operation by predicting action feasibility and assessing the execution outcome. The approach is evaluated in a realistic telerobotics experiment conducted with the humanoid robot Rollin' Justin.
elib-URL des Eintrags: | https://elib.dlr.de/146960/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | Unsupervised symbol emergence for supervised autonomy using multi-modal latent Dirichlet allocations | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 3 Dezember 2021 | ||||||||||||||||||||||||
Erschienen in: | Advanced Robotics | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
DOI: | 10.1080/01691864.2021.2007169 | ||||||||||||||||||||||||
Verlag: | Taylor & Francis | ||||||||||||||||||||||||
ISSN: | 0169-1864 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | MLDA, Symbol Emergence, Supervised Autonomy, Space Robotics | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Robotik | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R RO - Robotik | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - On-Orbit Servicing [RO], R - Intelligente Mobilität (RM) [RO] | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) | ||||||||||||||||||||||||
Hinterlegt von: | Lay, Florian Samuel | ||||||||||||||||||||||||
Hinterlegt am: | 11 Jan 2022 15:40 | ||||||||||||||||||||||||
Letzte Änderung: | 11 Sep 2023 13:24 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags