Reiersen, Gyri and Dao, David and Lütjens, Björn and Klemmer, Konstantin and Amara, Kenza and Steinegger, Attila and Zhang, Ce and Zhu, Xiao Xiang (2022) ReforesTree: A Dataset for Estimating Tropical Forest Carbon Stock with Deep Learning and Aerial Imagery. In: AAAI Conference on Artificial Intelligence (AAAI-22), pp. 12119-12125. Thirty-Sixth AAAI Conference on Artificial Intelligence, AI for Social Impact Track, 2022-02-22 - 2022-03-01, Virtuell.
PDF
995kB |
Official URL: https://aaai-2022.virtualchair.net/poster_aisi11904
Abstract
Forest biomass is a key influence for future climate, and the world urgently needs highly scalable financing schemes, such as carbon offsetting certifications, to protect and restore forests. Current manual forest carbon stock inventory methods of measuring single trees by hand are time, labour, and cost intensive and have been shown to be subjective. They can lead to substantial overestimation of the carbon stock and ultimately distrust in forest financing. The potential for impact and scale of leveraging advancements in machine learning and remote sensing technologies is promising, but needs to be of high quality in order to replace the current forest stock protocols for certifications.
Item URL in elib: | https://elib.dlr.de/146943/ | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||||||||||||||||||
Title: | ReforesTree: A Dataset for Estimating Tropical Forest Carbon Stock with Deep Learning and Aerial Imagery | ||||||||||||||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||||||||||||||
Date: | 2022 | ||||||||||||||||||||||||||||||||||||
Journal or Publication Title: | AAAI Conference on Artificial Intelligence (AAAI-22) | ||||||||||||||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||||||||||||||
In SCOPUS: | No | ||||||||||||||||||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||||||||||||||||||
Page Range: | pp. 12119-12125 | ||||||||||||||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||||||||||||||
Keywords: | AI4EO, Dataset, Carbon Stock, Deep Learning, Aerial Imagery | ||||||||||||||||||||||||||||||||||||
Event Title: | Thirty-Sixth AAAI Conference on Artificial Intelligence, AI for Social Impact Track | ||||||||||||||||||||||||||||||||||||
Event Location: | Virtuell | ||||||||||||||||||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||||||||||||||||||
Event Start Date: | 22 February 2022 | ||||||||||||||||||||||||||||||||||||
Event End Date: | 1 March 2022 | ||||||||||||||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||||||||||||||||||
Deposited By: | Rösel, Dr. Anja | ||||||||||||||||||||||||||||||||||||
Deposited On: | 08 Dec 2021 13:06 | ||||||||||||||||||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:45 |
Repository Staff Only: item control page