DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

Development of a radiometric sensor for the hazard assessment of scattered high-power laser radiation

Peckhaus, Andreas and Kuhne, Patrick and Neuland, Maike and Hall, Thomas and Pargmann, Carsten and Duschek, Frank (2021) Development of a radiometric sensor for the hazard assessment of scattered high-power laser radiation. In: Proceedings of SPIE - The International Society for Optical Engineering (11866), 118660M-1. SPIE. SPIE Security + Defence, 2021-09-13 - 2021-09-17, Online. doi: 10.1117/12.2599511. ISSN 0277-786X.

[img] PDF

Official URL: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11866/118660M/Development-of-a-radiometric-sensor-for-the-hazard-assessment-of/10.1117/12.2599511.full?SSO=1


The operation of lasers in free space involves the potential risk of unintentionally exposing the human eye and skin to radiation. In addition to direct exposure, indirect scattered radiation of high-power lasers may pose a threat to operators, working personnel, and third parties. Hazard assessments are usually performed based on laser safety standards. However, these standards would have to be extended for outdoor environments and therefore it is advisable to substantiate models and safety calculations with measurements of the absolute scattered radiant flux under realistic conditions. For the quantification of scattered radiation, a radiometric sensor has been developed. The sensor consists of an optical, electronic, and mechanical unit. Two realizations of the optical detection unit with a side-on photomultiplier (PMT) and a photodiode amplifier (PDA) have been built according to German safety policies. The different detector types facilitate the detection of scattered radiation over a wide power range. The electronic unit includes the data acquisition and processing of the optical detection unit and peripheral devices (i.e. environmental sensors and GPS module). A lock-in amplifier is used to reduce the contribution of background radiation. The optical and electronic units are housed separately in a weather-resistant case on a tripod and a mobile container, respectively. Radiometric calibration is performed for each optical detection unit. The calibration involves a two-step procedure allowing for a direct conversion of the output voltage of the lock-in amplifier into an absolute scattered power considering the detector area and collection solid angle of the optical detection unit. Goniometer-based reflection measurements of solid surface samples are used for the characterization of the performance of the optical detection unit in terms of dynamic range, the influence of background noise, accuracy, and repeatability and contribute to a better understanding of the sensor in future field deployment.

Item URL in elib:https://elib.dlr.de/146895/
Document Type:Conference or Workshop Item (Speech)
Title:Development of a radiometric sensor for the hazard assessment of scattered high-power laser radiation
AuthorsInstitution or Email of AuthorsAuthor's ORCID iDORCID Put Code
Pargmann, CarstenUNSPECIFIEDhttps://orcid.org/0000-0003-3688-6360UNSPECIFIED
Date:12 September 2021
Journal or Publication Title:Proceedings of SPIE - The International Society for Optical Engineering
Refereed publication:Yes
Open Access:Yes
Gold Open Access:No
In ISI Web of Science:No
Page Range:118660M-1
Series Name:Electro-Optical and Infrared Systems: Technology and Applications XVIII and Electro-Optical Remote Sensing XV
Keywords:Light scattering, Sensors, Laser scattering, Aluminium, Calibration, Optical amplifiers, Scatter measurement, Scattering, Laser safety, Optical testing
Event Title:SPIE Security + Defence
Event Location:Online
Event Type:international Conference
Event Start Date:13 September 2021
Event End Date:17 September 2021
Organizer:SPIE – The International Society for Optical Engineering
HGF - Research field:other
HGF - Program:other
HGF - Program Themes:other
DLR - Research area:Aeronautics
DLR - Program:L DT - Defense Technology
DLR - Research theme (Project):L - Effect
Location: Lampoldshausen
Institutes and Institutions:Institute of Technical Physics > Atmospheric Propagation and Effect
Deposited By: Peckhaus, Andreas
Deposited On:15 Dec 2021 10:21
Last Modified:24 Apr 2024 20:45

Repository Staff Only: item control page

Help & Contact
electronic library is running on EPrints 3.3.12
Website and database design: Copyright © German Aerospace Center (DLR). All rights reserved.