Ebel, Patrick and Schmitt, Michael and Zhu, Xiao Xiang (2021) Internal Learning for Sequence-to-Sequence Cloud Removal via Synthetic Aperture Radar Prior Information. In: International Geoscience and Remote Sensing Symposium (IGARSS), pp. 2691-2694. IGARSS 2021, 2021-07-11 - 2021-07-16, Brussels, virtuell. doi: 10.1109/IGARSS47720.2021.9554268.
PDF
4MB |
Official URL: https://ieeexplore.ieee.org/document/9554268
Abstract
Many observations acquired via optical satellites are polluted by cloud coverage, impeding a continuous and on-demand monitoring of the Earth. Recent advances in the field of cloud removal consider multi-temporal data to reconstruct pixels covered by clouds at a time point of interest. Yet, the limitation of preceding work is that information gets integrated over time, removing any temporal resolution from the de-clouded end products. In this work we consider a sequence-to-sequence approach, translating cloudy time series to a series of cloud-free multi-spectral images without the need of any external cloud-free data set. Our network is guided by synthetic aperture radar (SAR) information providing a strong prior for the reconstruction of cloud-covered information. We analyze the proposed method by visual inspection of predictions and in terms of error metrics to highlight its benefits. Finally, an ablation study is conducted in which the our network is compared against a baseline model and the effectiveness of the proposed SAR prior is demonstrated.
Item URL in elib: | https://elib.dlr.de/146242/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Lecture) | ||||||||||||||||
Title: | Internal Learning for Sequence-to-Sequence Cloud Removal via Synthetic Aperture Radar Prior Information | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | July 2021 | ||||||||||||||||
Journal or Publication Title: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | Yes | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||
DOI: | 10.1109/IGARSS47720.2021.9554268 | ||||||||||||||||
Page Range: | pp. 2691-2694 | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | Cloud removal, AI4EO, Remote Sensing, SAR, | ||||||||||||||||
Event Title: | IGARSS 2021 | ||||||||||||||||
Event Location: | Brussels, virtuell | ||||||||||||||||
Event Type: | international Conference | ||||||||||||||||
Event Start Date: | 11 July 2021 | ||||||||||||||||
Event End Date: | 16 July 2021 | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||
Deposited By: | Rösel, Dr. Anja | ||||||||||||||||
Deposited On: | 29 Nov 2021 08:04 | ||||||||||||||||
Last Modified: | 24 Apr 2024 20:45 |
Repository Staff Only: item control page