Ebel, Patrick und Schmitt, Michael und Zhu, Xiao Xiang (2021) Internal Learning for Sequence-to-Sequence Cloud Removal via Synthetic Aperture Radar Prior Information. In: International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 2691-2694. IGARSS 2021, 2021-07-11 - 2021-07-16, Brussels, virtuell. doi: 10.1109/IGARSS47720.2021.9554268.
PDF
4MB |
Offizielle URL: https://ieeexplore.ieee.org/document/9554268
Kurzfassung
Many observations acquired via optical satellites are polluted by cloud coverage, impeding a continuous and on-demand monitoring of the Earth. Recent advances in the field of cloud removal consider multi-temporal data to reconstruct pixels covered by clouds at a time point of interest. Yet, the limitation of preceding work is that information gets integrated over time, removing any temporal resolution from the de-clouded end products. In this work we consider a sequence-to-sequence approach, translating cloudy time series to a series of cloud-free multi-spectral images without the need of any external cloud-free data set. Our network is guided by synthetic aperture radar (SAR) information providing a strong prior for the reconstruction of cloud-covered information. We analyze the proposed method by visual inspection of predictions and in terms of error metrics to highlight its benefits. Finally, an ablation study is conducted in which the our network is compared against a baseline model and the effectiveness of the proposed SAR prior is demonstrated.
elib-URL des Eintrags: | https://elib.dlr.de/146242/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vorlesung) | ||||||||||||||||
Titel: | Internal Learning for Sequence-to-Sequence Cloud Removal via Synthetic Aperture Radar Prior Information | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | Juli 2021 | ||||||||||||||||
Erschienen in: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
DOI: | 10.1109/IGARSS47720.2021.9554268 | ||||||||||||||||
Seitenbereich: | Seiten 2691-2694 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Cloud removal, AI4EO, Remote Sensing, SAR, | ||||||||||||||||
Veranstaltungstitel: | IGARSS 2021 | ||||||||||||||||
Veranstaltungsort: | Brussels, virtuell | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 11 Juli 2021 | ||||||||||||||||
Veranstaltungsende: | 16 Juli 2021 | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||
Hinterlegt von: | Rösel, Dr. Anja | ||||||||||||||||
Hinterlegt am: | 29 Nov 2021 08:04 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:45 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags