Hong, Danfeng and Chanussot, Jocelyn and Zhu, Xiao Xiang (2021) An Overview of Multimodal Remote Sensing Data Fusion: From Image to Feature, from Shallow to Deep. In: International Geoscience and Remote Sensing Symposium (IGARSS), pp. 1245-1248. IGARSS 2021, 2021-07-11 - 2021-07-16, Brussels, virtuell. doi: 10.1109/IGARSS47720.2021.9554255.
PDF
139kB |
Official URL: https://ieeexplore.ieee.org/document/9554255
Abstract
With the ever-growing availability of different remote sens-ing (RS) products from both satellite and airborne platforms,simultaneous processing and interpretation of multimodal RSdata have shown increasing significance in the RS field. Dif-ferent resolutions, contexts, and sensors of multimodal RSdata enable the identification and recognition of the materialslying on the earth’s surface at a more accurate level by de-scribing the same object from different points of the view. Asa result, the topic on multimodal RS data fusion has graduallyemerged as a hotspot research direction in recent years.This paper aims at presenting an overview of multimodalRS data fusion in several mainstream applications, which canbe roughly categorized by 1) image pansharpening, 2) hyper-spectral and multispectral image fusion, 3) multimodal fea-ture learning, and (4) crossmodal feature learning. For eachtopic, we will briefly describe what is the to-be-addressed re-search problem related to multimodal RS data fusion and givethe representative and state-of-the-art models from shallow todeep perspectives.
Item URL in elib: | https://elib.dlr.de/146240/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||
Title: | An Overview of Multimodal Remote Sensing Data Fusion: From Image to Feature, from Shallow to Deep | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | 2021 | ||||||||||||||||
Journal or Publication Title: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | Yes | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||
DOI: | 10.1109/IGARSS47720.2021.9554255 | ||||||||||||||||
Page Range: | pp. 1245-1248 | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | Classification, crossmodal, data fusion,deep learning, feature learning, multimodal, pansharpening,remote sensing, shallow models | ||||||||||||||||
Event Title: | IGARSS 2021 | ||||||||||||||||
Event Location: | Brussels, virtuell | ||||||||||||||||
Event Type: | international Conference | ||||||||||||||||
Event Start Date: | 11 July 2021 | ||||||||||||||||
Event End Date: | 16 July 2021 | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||
Deposited By: | Rösel, Dr. Anja | ||||||||||||||||
Deposited On: | 29 Nov 2021 08:02 | ||||||||||||||||
Last Modified: | 24 Apr 2024 20:45 |
Repository Staff Only: item control page