Hong, Danfeng and Chanussot, Jocelyn and Zhu, Xiao Xiang (2021) An Overview of Multimodal Remote Sensing Data Fusion: From Image to Feature, from Shallow to Deep. In: International Geoscience and Remote Sensing Symposium (IGARSS), pp. 1245-1248. IGARSS 2021, 11.-16.7.21, Brussels, virtuell. doi: 10.1109/IGARSS47720.2021.9554255.
![]() |
PDF
- Only accessible within DLR bis July 2022
139kB |
Official URL: https://ieeexplore.ieee.org/document/9554255
Abstract
With the ever-growing availability of different remote sens-ing (RS) products from both satellite and airborne platforms,simultaneous processing and interpretation of multimodal RSdata have shown increasing significance in the RS field. Dif-ferent resolutions, contexts, and sensors of multimodal RSdata enable the identification and recognition of the materialslying on the earth’s surface at a more accurate level by de-scribing the same object from different points of the view. Asa result, the topic on multimodal RS data fusion has graduallyemerged as a hotspot research direction in recent years.This paper aims at presenting an overview of multimodalRS data fusion in several mainstream applications, which canbe roughly categorized by 1) image pansharpening, 2) hyper-spectral and multispectral image fusion, 3) multimodal fea-ture learning, and (4) crossmodal feature learning. For eachtopic, we will briefly describe what is the to-be-addressed re-search problem related to multimodal RS data fusion and givethe representative and state-of-the-art models from shallow todeep perspectives.
Item URL in elib: | https://elib.dlr.de/146240/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||
Title: | An Overview of Multimodal Remote Sensing Data Fusion: From Image to Feature, from Shallow to Deep | ||||||||||||
Authors: |
| ||||||||||||
Date: | 2021 | ||||||||||||
Journal or Publication Title: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||
Refereed publication: | Yes | ||||||||||||
Open Access: | No | ||||||||||||
Gold Open Access: | No | ||||||||||||
In SCOPUS: | Yes | ||||||||||||
In ISI Web of Science: | No | ||||||||||||
DOI : | 10.1109/IGARSS47720.2021.9554255 | ||||||||||||
Page Range: | pp. 1245-1248 | ||||||||||||
Status: | Published | ||||||||||||
Keywords: | Classification, crossmodal, data fusion,deep learning, feature learning, multimodal, pansharpening,remote sensing, shallow models | ||||||||||||
Event Title: | IGARSS 2021 | ||||||||||||
Event Location: | Brussels, virtuell | ||||||||||||
Event Type: | international Conference | ||||||||||||
Event Dates: | 11.-16.7.21 | ||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||
HGF - Program: | Space | ||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||
Deposited By: | Rösel, Anja | ||||||||||||
Deposited On: | 29 Nov 2021 08:02 | ||||||||||||
Last Modified: | 01 Dec 2021 11:12 |
Repository Staff Only: item control page