Hong, Danfeng und Chanussot, Jocelyn und Zhu, Xiao Xiang (2021) An Overview of Multimodal Remote Sensing Data Fusion: From Image to Feature, from Shallow to Deep. In: International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 1245-1248. IGARSS 2021, 2021-07-11 - 2021-07-16, Brussels, virtuell. doi: 10.1109/IGARSS47720.2021.9554255.
PDF
139kB |
Offizielle URL: https://ieeexplore.ieee.org/document/9554255
Kurzfassung
With the ever-growing availability of different remote sens-ing (RS) products from both satellite and airborne platforms,simultaneous processing and interpretation of multimodal RSdata have shown increasing significance in the RS field. Dif-ferent resolutions, contexts, and sensors of multimodal RSdata enable the identification and recognition of the materialslying on the earth’s surface at a more accurate level by de-scribing the same object from different points of the view. Asa result, the topic on multimodal RS data fusion has graduallyemerged as a hotspot research direction in recent years.This paper aims at presenting an overview of multimodalRS data fusion in several mainstream applications, which canbe roughly categorized by 1) image pansharpening, 2) hyper-spectral and multispectral image fusion, 3) multimodal fea-ture learning, and (4) crossmodal feature learning. For eachtopic, we will briefly describe what is the to-be-addressed re-search problem related to multimodal RS data fusion and givethe representative and state-of-the-art models from shallow todeep perspectives.
elib-URL des Eintrags: | https://elib.dlr.de/146240/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | An Overview of Multimodal Remote Sensing Data Fusion: From Image to Feature, from Shallow to Deep | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2021 | ||||||||||||||||
Erschienen in: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
DOI: | 10.1109/IGARSS47720.2021.9554255 | ||||||||||||||||
Seitenbereich: | Seiten 1245-1248 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Classification, crossmodal, data fusion,deep learning, feature learning, multimodal, pansharpening,remote sensing, shallow models | ||||||||||||||||
Veranstaltungstitel: | IGARSS 2021 | ||||||||||||||||
Veranstaltungsort: | Brussels, virtuell | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 11 Juli 2021 | ||||||||||||||||
Veranstaltungsende: | 16 Juli 2021 | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||
Hinterlegt von: | Rösel, Dr. Anja | ||||||||||||||||
Hinterlegt am: | 29 Nov 2021 08:02 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:45 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags