Qian, Kun and Wang, Yuanyuan and Shi, Yilei and Zhu, Xiao Xiang (2021) Super-resolving SAR Tomography using deep learning. In: International Geoscience and Remote Sensing Symposium (IGARSS), pp. 4810-4813. IGARSS 2021, 2021-07-12 - 2021-07-16, Brussels. doi: 10.1109/IGARSS47720.2021.9554165.
PDF
298kB |
Official URL: https://ieeexplore.ieee.org/document/9554165
Abstract
Synthetic aperture radar tomography (TomoSAR) has been widely employed in 3-D urban mapping. However, state-of-the-art super-resolving TomoSAR algorithms are computationally expensive, because conventional numerical solvers need to solve the L2-L1 mix norm minimization. This paper proposes a computationally efficient super-resolving TomoSAR inversion algorithm based on deep learning. We studied the potential of deep learning to mimic a conventional L2-L1 mix norm solver, i.e. iterative shrinkage thresholding algorithm (ISTA), and proposed several improvements of the complex-valued learned ISTA for TomoSAR inversion. Investigation on the super-resolution ability and estimator efficiency of the proposed algorithm shows that the proposed algorithm approaches the Cramer Rao lower bound (CRLB) with a computational efficiency more than 100 times better than the conventional solver.
Item URL in elib: | https://elib.dlr.de/146236/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||
Title: | Super-resolving SAR Tomography using deep learning | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | July 2021 | ||||||||||||||||||||
Journal or Publication Title: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||
DOI: | 10.1109/IGARSS47720.2021.9554165 | ||||||||||||||||||||
Page Range: | pp. 4810-4813 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | SAR tomography, Super-resolution, Complex-valued neural network, Compressive sensing, deep learning | ||||||||||||||||||||
Event Title: | IGARSS 2021 | ||||||||||||||||||||
Event Location: | Brussels | ||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||
Event Start Date: | 12 July 2021 | ||||||||||||||||||||
Event End Date: | 16 July 2021 | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
DLR - Research theme (Project): | R - SAR methods, R - Artificial Intelligence | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||
Deposited By: | Qian, Kun (Admin.), Funktional | ||||||||||||||||||||
Deposited On: | 29 Nov 2021 08:42 | ||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:45 |
Repository Staff Only: item control page