Qian, Kun und Wang, Yuanyuan und Shi, Yilei und Zhu, Xiao Xiang (2021) Super-resolving SAR Tomography using deep learning. In: International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 4810-4813. IGARSS 2021, 2021-07-12 - 2021-07-16, Brussels. doi: 10.1109/IGARSS47720.2021.9554165.
PDF
298kB |
Offizielle URL: https://ieeexplore.ieee.org/document/9554165
Kurzfassung
Synthetic aperture radar tomography (TomoSAR) has been widely employed in 3-D urban mapping. However, state-of-the-art super-resolving TomoSAR algorithms are computationally expensive, because conventional numerical solvers need to solve the L2-L1 mix norm minimization. This paper proposes a computationally efficient super-resolving TomoSAR inversion algorithm based on deep learning. We studied the potential of deep learning to mimic a conventional L2-L1 mix norm solver, i.e. iterative shrinkage thresholding algorithm (ISTA), and proposed several improvements of the complex-valued learned ISTA for TomoSAR inversion. Investigation on the super-resolution ability and estimator efficiency of the proposed algorithm shows that the proposed algorithm approaches the Cramer Rao lower bound (CRLB) with a computational efficiency more than 100 times better than the conventional solver.
elib-URL des Eintrags: | https://elib.dlr.de/146236/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | Super-resolving SAR Tomography using deep learning | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | Juli 2021 | ||||||||||||||||||||
Erschienen in: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
DOI: | 10.1109/IGARSS47720.2021.9554165 | ||||||||||||||||||||
Seitenbereich: | Seiten 4810-4813 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | SAR tomography, Super-resolution, Complex-valued neural network, Compressive sensing, deep learning | ||||||||||||||||||||
Veranstaltungstitel: | IGARSS 2021 | ||||||||||||||||||||
Veranstaltungsort: | Brussels | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 12 Juli 2021 | ||||||||||||||||||||
Veranstaltungsende: | 16 Juli 2021 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - SAR-Methoden, R - Künstliche Intelligenz | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||
Hinterlegt von: | Qian, Kun (Admin.), Funktional | ||||||||||||||||||||
Hinterlegt am: | 29 Nov 2021 08:42 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:45 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags