Qian, Kun und Wang, Yuanyuan und Shi, Yilei und Zhu, Xiao Xiang (2021) Super-resolving SAR Tomography using deep learning. In: International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 4810-4813. IGARSS 2021, 2021-07-12 - 2021-07-16, Brussels. doi: 10.1109/IGARSS47720.2021.9554165.
|
PDF
298kB |
Offizielle URL: https://ieeexplore.ieee.org/document/9554165
Kurzfassung
Synthetic aperture radar tomography (TomoSAR) has been widely employed in 3-D urban mapping. However, state-of-the-art super-resolving TomoSAR algorithms are computationally expensive, because conventional numerical solvers need to solve the L2-L1 mix norm minimization. This paper proposes a computationally efficient super-resolving TomoSAR inversion algorithm based on deep learning. We studied the potential of deep learning to mimic a conventional L2-L1 mix norm solver, i.e. iterative shrinkage thresholding algorithm (ISTA), and proposed several improvements of the complex-valued learned ISTA for TomoSAR inversion. Investigation on the super-resolution ability and estimator efficiency of the proposed algorithm shows that the proposed algorithm approaches the Cramer Rao lower bound (CRLB) with a computational efficiency more than 100 times better than the conventional solver.
| elib-URL des Eintrags: | https://elib.dlr.de/146236/ | ||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
| Titel: | Super-resolving SAR Tomography using deep learning | ||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||
| Datum: | Juli 2021 | ||||||||||||||||||||
| Erschienen in: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||
| Open Access: | Ja | ||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||||||
| DOI: | 10.1109/IGARSS47720.2021.9554165 | ||||||||||||||||||||
| Seitenbereich: | Seiten 4810-4813 | ||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||
| Stichwörter: | SAR tomography, Super-resolution, Complex-valued neural network, Compressive sensing, deep learning | ||||||||||||||||||||
| Veranstaltungstitel: | IGARSS 2021 | ||||||||||||||||||||
| Veranstaltungsort: | Brussels | ||||||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
| Veranstaltungsbeginn: | 12 Juli 2021 | ||||||||||||||||||||
| Veranstaltungsende: | 16 Juli 2021 | ||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||||||
| HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
| DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - SAR-Methoden, R - Künstliche Intelligenz | ||||||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||
| Hinterlegt von: | Qian, Kun (Admin.), Funktional | ||||||||||||||||||||
| Hinterlegt am: | 29 Nov 2021 08:42 | ||||||||||||||||||||
| Letzte Änderung: | 24 Apr 2024 20:45 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags